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How Linux Boots Overview

Booting - Overview

Many terms → confusion:

Root Filesystem

Root Directory

Kernel Commandline

Userspace

initrd

initramfs

OS Image

init
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How Linux Boots Overview

Root Filesystem

Definition: the Root Filesystem is the filesystem where the first
program is

“Userspace is born”

Trditionally called init (but can be anything)

Problem: how does the kernel know where the root filesystem is?

Kernel commandline: for example, root=/dev/sda1, or
root=/dev/mtdblock3

/sbin/init if not otherwise specified. Explicit: init=/my/init

Driver for root filesystem has to be built into kernel image

Modules are loaded from userspace

→ Kernel mounts root filesystem as specified on kernel commandline
(visible in /proc/cmdline)
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How Linux Boots Overview

Root Filesystem, More Complex

Problem: a filesystem’s parameters aren’t always as simple as /dev/sda1

...

Network Filesystem (NFS). Historically implemented in the kernel.

Encrypted partition → many parameters (algorithm, pass phrase, ...)

Logical Volume Manager (LVM)

...

→ Not easily governed via the kernel commandline
→ Solution: “Early Userspace”
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How Linux Boots Mounting Filesystems

The mount Command

Hierarchy of Unix systems is transparently extensible (26 drive letters?
What the ...?!? )

“Mounting” a filesystem on a mount point

Hierarchy is transparently composed of multiple filesystems

Filesystem is contained in a block device

Mounting, e.g.:

# mount /dev/sdb1 /mnt/usb-stick

# mount /dev/mmcblk0p3 /home
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How Linux Boots Mounting Filesystems

The mkfs Command

How are filesystems created? (Doze: how are partitions formatted?)

Thousands of different filesystems: ext2, ext3, xfs, btrfs, ...

Every filesystem has a different format

→ Filesystem specific mkfs programs; z.B. mkfs.ext2

Flash filesystems are different

Operate directly in flash memory → no block device involved

mkfs

# mkfs.ext2 /dev/sdb1
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How Linux Boots Mounting Filesystems

Loop Mounts — Filesystem in a File (1)

Question: if /dev/sda1 looks like a file, why shouldn’t a real file contain
a file system?

Answer: who said it cannot?

mkfs can operate on files (everything is a file, right?)

But: a file is not a block device → “loop” mount

Step one: create empty file

# dd if=/dev/zero of=./my-image bs=4096 count=1024
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How Linux Boots Mounting Filesystems

Loop Mounts — Filesystem in a File (2)

Step two: filesystem into file

# mkfs.ext2 ./my-image

mke2fs 1.41.14 (22-Dec-2010)

./my-image is not a block special device.

Proceed anyway? (y,n) y

man mkfs.ext2 → -F to suppress annoying question

Check: file type?

# file ./my-image

./my-image: Linux rev 1.0 ext2 filesystem data, ...
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How Linux Boots Mounting Filesystems

Loop Mounts — Filesystem in a File (3)

Mounting the image on a mount point ...

Loop-mounting my-image

# mkdir ./my-mountpoint

# mount -o loop ./my-image ./my-mountpoint

# ls ./my-mountpoint/

lost+found
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How Linux Boots Mounting Filesystems

Loop Mounts — Filesystem in a File (4)

Image is now mounted → one can modify it just like any other filesystem

# cp -r ~jfasch ./my-mountpoint

# umount ./my-mountpoint
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How Linux Boots chroot

The Root Directory

The root directory is special:

Absolute paths (e.g. /bin/bash) do start there

There are no entries above it

→ Cannot escape → ”Jail”

Exact definition:

“Root directory” is a process attribute → each process can have its
own root directory

Path lookup starts there

A process’s “root directory” attribute is inherited → child processes
have the same root as its parent

→ not so special at all!
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How Linux Boots chroot

Changing Root Directory — chroot (System Call)

System Call chroot (→ man -s 2 chroot)

Changes path lookup for the calling process (and does nothing else)

Current Working Directory (CWD) remains the same

Open files remain open

→ relatively useless on its own
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How Linux Boots chroot

Changing Root Directory — chroot (Command)

Command chroot (→ man chroot)

Shell Command

Combines chroot() with execution of a program

Program must exist in new root

All prerequisites (shared libraries, ...) must exist in new root

→ “Chroot Jail”
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How Linux Boots chroot

chroot: Demo Time

... working environment with /bin/bash ...
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How Linux Boots chroot

chroot: Use Cases

Environment for services that are not trustworthy (better yet:
containers, virtual machines)

Build environment for other systems (building for Ubuntu on a Fedora
system for example)

“Boot-through”: booting into a temporary RAM filesystem
(initramfs), load drivers from there (NFS, encryption, whatever),
mount real root, and then boot into the now-mounted real root
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How Linux Boots Bind and Move Mounts

Bind Mounts

Chroot-Jail is a jail

→ Symbolic links to the outer world don’t work

→ Bind Mounts

Mount files and directories, rather than device nodes

→ Mount points can be files and directories
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How Linux Boots Bind and Move Mounts

Bind Mounts: Demo Time

Bind Mount: example

# mkdir -p ./my-mountpoint/home/jfasch

# mount -o bind /home/jfasch ./my-mountpoint/home/jfasch

...
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How Linux Boots Bind and Move Mounts

Move Mounts

To move mount points cries for trouble (umount is confused ...)

Clean method:

Move mounts

# mkdir old-mountpoint new-mountpoint

# mount /dev/sda1 old-mountpoint

# mount --move old-mountpoint new-mountpoint}

Use: Initramfs is a typical example

Main task: prepare real/final root filesystem

Temporarily mounted somewhere

At the time of switching (→ chroot) into the real root filesystem,
procfs und sysfs are moved there
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How Linux Boots Early Userspace

Late vs. Early Userspace

“Late Userspace”

Kernel has to do a lot to make root filesystem available

Hardware initialization (SATA, MTD, ...)

Mounting the filesystem, applying the right parameters

Parameters usually passed via kernel commandline

→ inflexible!

Doing complicated things does not belong in the kernel → “Early
Userspace”
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How Linux Boots Early Userspace

RAM Filesystem

ramfs - RAM Filesystem

Simple filesystem in RAM

Grows and shrinks with content

Elder brother, the fat and dumb ramdisk ...

Fixed sized block device in RAM

Contains a real file system
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How Linux Boots Early Userspace

Initial RAM Filesystem — initramfs

Kernel has always a cpio archive built-in

Empty by default

During boot: unpacked into a RAM filesystem → initramfs

If the filesystem contains /init → done. /init (PID 1) takes
control over booting.

Else → as before, root=/dev/sda1 etc.
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How Linux Boots Early Userspace

Initial RAM Filesystem — Demo Time

CONFIG INITRAMFS SOURCE (“General setup”)

Don’t forget console 5 1
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Kernel Management Kernel Source

Kernel Source

Maintained with Git

→ Distributed

Not centrally maintained

Linux Torvalds plays the role of “integrator”

→ Pulls changes on a regular basis

Releases on www.kernel.org

Linus’ development tree: github.com/torvalds/linux

$ git clone https://github.com/torvalds/linux.git
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Kernel Management Kernel Source

Kernel Source Overview

Top level directory

Documentation: large hierarchy of .txt files

Varying quality (it’s getting better though)
Must-read for developers

include/uapi: header files for use by userspace

include (except uapi): internal header files

kernel: core kernel implementation (sched/, irq/, time/, ...)

block, crypto, ipc, security, sound ...: various “subsystems”

drivers: this is where most code is
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Kernel Management Kernel Source

Git, Configuration, Build, ...

Best learned from the Internet ...

www.faschingbauer.co.at/de/howtos/raspi-kernel-build/

Documentation/kbuild/ in the kernel source
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Kernel Management Kernel Modules

Which Modules are Loaded?

/proc/modules

$ cat /proc/modules

cfg80211 506427 0 - Live 0xbf119000

rfkill 21324 1 cfg80211, Live 0xbf10e000

i2c_bcm2708 5960 0 - Live 0xbf102000

bcm2835_gpiomem 3695 0 - Live 0xbf0fe000

...

More information: lsmod

$ lsmod

Module Size Used by

cfg80211 506427 0

rfkill 21324 1 cfg80211

i2c_bcm2708 5960 0

bcm2835_gpiomem 3695 0

...
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Kernel Management Kernel Modules

Module Metadata

$ modinfo i2c_bcm2708

filename: /lib/modules/4.1.10-rt-jfasch+/kernel/drivers/i2c/busses/i2c-bcm2708.ko

alias: platform:bcm2708_i2c

license: GPL v2

author: Chris Boot <bootc@bootc.net>

description: BSC controller driver for Broadcom BCM2708

srcversion: E126C7409891BBDF7859E58

alias: of:N*T*Cbrcm,bcm2708-i2c*

depends:

intree: Y

vermagic: 4.1.10-rt-jfasch+ preempt mod_unload modversions ARMv6

parm: baudrate:The I2C baudrate (uint)

parm: combined:Use combined transactions (bool)
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Kernel Management Kernel Modules

Loading Modules: insmod

Loading a single module: insmod

# insmod /lib/modules/4.1.10-rt-jfasch+/kernel/drivers/i2c/i2c-dev.ko

Fails when dependencies are not satisfied ...

# insmod /lib/modules/4.1.10-rt-jfasch+/kernel/sound/soc/...

...bcm/snd-soc-hifiberry-dac.ko

insmod: ERROR: could not insert module /lib/modules/4.1.10-...

...rt-jfasch+/kernel/sound/soc/bcm/snd-soc-hifiberry-dac.ko: ...

...Unknown symbol in module
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Kernel Management Kernel Modules

Loading Modules: modprobe

Load a module, along with all its dependencies

Unlike insmod, the module must be installed

Uses generated modules.dep in /lib/modules/$(uname -r)

→ depmod

# modprobe snd-soc-hifiberry-dac
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Kernel Management Kernel Modules

Unloading Modules: rmmod vs. modprobe

Multiple ways to unload code ...

rmmod modulename: unloads module only

Leftover dependencies (modules that are not used anymore)

modprobe -r modulename

Cleans up dependency graph
Unloads all modules which are not used anymore
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Kernel Internals

Kernel Concepts

Kernel: is/supplies the world where processes live

Schedules processes → fair and realtime

Provides entry points for processes

System calls: open(), read(), write(), close(), and hundreds more
Character devices: dedicated communication with device drivers
(accessible like files)
Sysfs: dedicated communication with device drivers (the modern way)
...

Handles device interrupts

Extremely parallel

Processes switch to kernel mode via system calls
Kernel threads
Interrupts
→ Many locking primitives for different purposes
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Kernel Internals

Parallel Programming: Process Context

Process context: everything that can be identified by a process ID

Processes (and threads) that execute in user mode → process address
space

Processes (and threads) that execute in kernel mode → kernel
address space

Kernel threads → kernel address space

Preemption ...

Process context is subject to scheduling

Fair scheduling: preemption at end of time slice

Realtime: preemption when higher priority process/thread is runnable
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Kernel Internals

Parallel Programming: Race Conditions

When do race conditions occur?

Two processes/threads share the same address space

Manipulate the same data structure

In kernel address space?

Userspace processes executing a system call (“switch to kernel mode”)

Kernel threads

Protection through locking

Mutexes: locker has to wait until unlocked

Spinlocks: locker loops until unlocked

Atomic context

44 / 106



Kernel Internals

Parallel Programming: Atomic Context

Atomic context is where code must not sleep!

Interrupt service routine

Interrupts disabled
No preemption, no scheduling, no nothing
→ primary source of latency

“Bottom half” — code that runs in interrupt context (not subject to
scheduling), but interrupts are already enabled

Deferred work → “tasklet”, “soft-IRQ”
Best avoided because not easily controllable, realtime-wise

All code that holds a spinlock
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Kernel Internals

Parallel Programming: Atomic vs. Process Context

Atomic context must not sleep

Preemption disabled → prioritization impossible

High latency if atomic code runs for too long

Severe restrictions

Paging
Locking is difficult
...

Process context ...

Subject to scheduling → easily prioritized (be it realtime or not)

Easy locking

Conclusion

Atomic context best avoided

... at least when absolute control is desired
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Kernel Internals Duplicating

File Descriptors, Open File, I-Node

File descriptor is a “handle” to
a more complex structure
File (“Open File”)

Offset

Flags

I-Node

Type

Block list

...
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Kernel Internals Duplicating

File Descriptors and Inheritance

A call to fork() inherits
file descriptors

→ reference counted copy
of the same “Open File”.

→ Processes share flags
and offset!

File closed (open file
freed) only when last copy
is closed
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Kernel Internals Duplicating

Duplicating File Descriptors

man 2 dup

int dup(int oldfd);

Return: new file descriptor

man 2 dup2

int dup2(int oldfd, int newfd);

newfd already open/occupied →
implicit close()
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Kernel Internals Duplicating

Example: Shell Stdout-Redirection (1)

Stdout-Redirection

$ /bin/echo Hello > /dev/null

Redirection is a shell
responsibility
(/bin/bash)

echo writes “Hello” to
standard output.

... and does not
want/have to care where
it actually goes
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Kernel Internals Duplicating

Example: Shell Stdout-Redirection (2)

Stdout-Redirection

$ strace -f bash -c ’/bin/echo Hallo > /dev/null’

[3722] open("/dev/null", O_WRONLY|O_...) = 3

[3722] dup2(3, 1) = 1

[3722] close(3) = 0

[3722] execve("/bin/echo", ...) = 0

(fork(), exec(), wait() omitted for clarity.)
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Kernel Internals Duplicating

Example: Shell Stdout-Redirection (2)

open("/dev/null") dup2(3, 1) close(3)
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Kernel Internals Character Devices

Character Devices

“Everything is a file” → so are driver interfaces

Path name so userspace can find driver interface

Commonly stored in /dev (but not necessarily so)

Major number : driver identification

Minor number : functionality inside driver

crw-r----- 1 root kmem 1, 1 Nov 13 14:23 /dev/mem

crw-rw-rw- 1 root root 1, 3 Nov 13 14:23 /dev/null

crw-r----- 1 root kmem 1, 4 Nov 13 14:23 /dev/port

crw-rw-rw- 1 root root 1, 8 Nov 13 14:23 /dev/random

crw-rw-rw- 1 root root 1, 9 Nov 13 14:23 /dev/urandom

crw-rw-rw- 1 root root 1, 5 Nov 13 14:23 /dev/zero
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Kernel Internals Character Devices

Character Devices: Creation

Good old Unix way ...

# mknod ~/random c 1 8

# cat ~/random

... entropy ...

Problems:

Populating /dev by hand is cumbersome

One node for every piece of hardware that might possibly exist

Distributions used to ship with a huge tarball of /dev entries

Running out of major numbers

Historically, every driver had its own unique major number

Major number conflicts → central registry, like PCI vendor numbers?
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Kernel Internals Character Devices

Character Devices: Creation

Linux way: devtmpfs

File system that contains device nodes

Automatically populated by the kernel

... with a little driver support

$ mount

...

devtmpfs on /dev type devtmpfs (rw,relatime,...)

...
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Kernel Internals Character Devices

Interface Definition

Character devices are interfaces

Driver writer supplies methods (read, write, ...)

Semantics are up to the implementor

Good Unix citizenship encouraged (but not enforced)

#include <linux/fs.h>

struct file_operations my_ops = {

.owner = THIS_MODULE,

.open = my_open,

.read = my_read,

.write = my_write,

.unlocked_ioctl = my_ioctl

};
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Kernel Internals Character Devices

Available Methods

More methods “overloadable” ...

All methods receive struct file as “this” parameter

open: implements man -s 2 open — inode already loaded, struct
file allocated → “constructor”

read: implements man -s 2 read

write: implements man -s 2 write

unlocked ioctl: implements man -s 2 ioctl

flush: reference count decremented

release: reference count reached zero → struct file freed
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Kernel Internals Character Devices

open(): Userspace

man -s 2 open

int open(const char *pathname, int flags);

int open(const char *pathname, int flags, mode_t mode);

Opens and/or creates a file

Many flags/parameters

Permissions

Driver not concerned with all that

→ Virtual File System layer
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Kernel Internals Character Devices

open(): Kernelspace

All complicated stuff done by VFS layer

Hook for driver to associate driver data with struct file

Looks weird

Is simple

→ Later by example
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Kernel Internals Character Devices

ioctl(): Userspace

Swiss army knife ...

Used to communicate with drivers

All that doesn’t fit in read(), write()

man -s 2 ioctl

#include <sys/ioctl.h>

int ioctl(int fd, unsigned long request, ...);

fd: handle to open device node

request: device specific request code

...: (if any) a single parameter

Usually a pointer
Can be integer, but should be of pointer size
Type depends on value of request
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Kernel Internals Character Devices

ioctl(): Kernelspace

static long my_ioctl(

struct file *file,

unsigned int request,

unsigned long arg) {...}

file: (as always) in-kernel pendant to userspace file descriptor

request: userspace request

arg: the “...” parameter from userspace. descriptor. Cast arbitrarily,
depending on request
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Kernel Internals Character Devices

Filling in Functionality: struct cdev

struct cdev: the device object

This is what is opened

Created, initialized by driver

Announced to userspace through device node

Usually embedded in a larger structure

→ container of macro

→ 20-cdev-manual-mknod.c
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Kernel Internals Locking

Locking in the Kernel

Userspace parallelism is simple ...

All code is preemptible

... no way of disabling preemption

Critical sections are best protected by a mutex (pthread mutex t)

Kernel parallelism is different ...

Schedulable code

Processes in kernel mode
kernel threads

Non-schedulable code

Interrupt service routines
Other atomic code (spinlock holders)
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Kernel Internals Locking

Mutual Exclusion: Mutex

Process context vs. process context

Classic mutex semantics

Binary semaphore

If held, arriving processes have to wait — they are scheduled

#include <linux/mutex.h>

struct mutex mutex;

OO-like constructor and destructor

mutex_init(&mutex);

mutex_destroy(&mutex);
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Kernel Internals Locking

Mutex: Locking (1)

Locking is done in many different ways ...

Preferred version: “interruptible”

int error = mutex_lock_interruptible(&mutex);

Puts the caller to sleep if lock is held by someone else

Attention: no protection against self-deadlock!

“Interruptible”: return -EINTR (“Interrupted system call”) if process
receives a signal

Good old Unix

Uninterruptible sleeps should be used with care
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Kernel Internals Locking

Mutex: Locking (2)

Recursive locking ...

int error = mutex_lock_interruptible_nested(&mutex);

Same process may lock multiple times (no deadlock)

Must unlock as many times

Use is questionable though

Polling ...

int error = mutex_trylock(&mutex);

Lock if not held

Otherwise, return -EAGAIN immediately

Use is even more questionable than recursive
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Kernel Internals Locking

Mutex: Releasing

At the end of the critical section ...

mutex_unlock(&mutex);

Releases the lock

Wakes up waiter if any
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Kernel Internals Locking

Realtime Mutex

struct mutex does not support priority inheritance

Linus Torvalds does not like realtime

“Friends don’t let friends use priority inheritance. Just don’t do it. If you
really need it, your system is broken anyway.”

lwn.net/Articles/178253/

Features from the PREEMPT RT tree keep trickling in

→ “Realtime” mutex with priority inheritance

Used just like ordinary mutex

#include <linux/rtmutex.h>

struct rt_mutex mutex;
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Kernel Internals Locking

Mutual Exclusion: Spinlock

Atomic context must not sleep → busy waiting

The only locking possibility in atomic context

Can also be used in process context
Cheap — no context switch if lock is held
Interrupts off on local CPU → anti-realtime

How does it work?

On a Uniprocessor
Disable interrupts
=⇒ preemption disabled
=⇒ lock in its simplest form

On a Multiprocessor
Set “locked” flag (atomically)
Disable interrupts on local processor
=⇒ no preemption on local processor

Remote processors busy wait around the “locked” flag (atomically
trying to test-and-set it)
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Kernel Internals Locking

Spinlock: Initialization

#include <linux/spinlock.h>

spinlock_t lock;

Initialization

spin_lock_init(&lock);

No destructor available
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Kernel Internals Locking

Spinlock: Usage

Too many variations ...

Multiple spinlocks can be acquired in a lock chain

Most variations don’t keep track of interrupt state

Too easy to re-enable interrupts too early
One cannot always control the call chain

→ Only one variation that is really safe

unsigned long irqflags;

spin_lock_irqsave(&lock, irqflags);

...

spin_unlock_irqrestore(&lock, irqflags);

No nesting (no recursive locks) → deadlock
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Kernel Internals Locking

Mutual Exclusion: Conclusion

There is always a tradeoff ...

Spinlocks are good

No expensive context switch during lock contention
Can be used in (between) interrupt context and process context

Spinlocks are bad

No sleep! (→ no easy memory allocation, no easy this, no easy that)
Must be held very short → no scheduling/preemption on local
processor

Mutexes are good

Sleeping allowed
Everything’s easy

Mutexes are bad

Expensive context switch during lock contention
Cannot be used in interrupt context
→ no easy data sharing between process and interrupt context
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Kernel Internals Communication

Communication: Wait Queues

Wait conditions in the kernel

Processes (user space and kernel) want to do nothing when there’s
nothing to do

Suspend themselves on wait conditions

Wakeup when condition becomes true

Producer/consumer relationships

Most basic (and widely used) wait condition ...

#include <linux/wait.h>

wait_queue_head_t wait_queue;

init_waitqueue_head(&wait_queue);
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Kernel Internals Communication

Wait Queue: Waiting (1)

Typical usage pattern

do_lock(&lock);

while (!condition) {

do_unlock(&lock);

error = wait_event_interruptible(&wait_queue, condition);

if (error == -EINTR) /*interrupted by signal*/

return error;

else {

/* handle other errors */

}

do_lock(&lock);

}

handle_data(...);

do_unlock(&lock);
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Kernel Internals Communication

Wait Queue: Waiting (2)

Remarks

lock can be any kind of lock (wait queue is not tied to a lock type)

condition is checked with the lock held (clearly)

Use interruptible sleeps wherever possible

Otherwise the waiting process cannot be killed (Ctrl-C, for example)
Same with mutex waits, same with any waits
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Kernel Internals Communication

Wait Queue: Waking

Multiple wait functions ...

Preferred: wake up one interruptible waiter

wake_up_interruptible(&wait_queue);

Remarks

Normally there should only be interruptible waiters

wake up interruptible all(): “thundering herd”
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Kernel Internals Communication

Wait Queue: Conclusion

Wait queues

Not the only communication device

Completion: one-shot device (→ LDD3)
Semaphore: most basic (at the basis of all others)

Wakeup possible in interrupt (wake does not sleep)

Waiting only possible in process context
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Kernel Internals Memory

Dynamic Memory: kmalloc()

Kernel heap implementation

Similar to userspace malloc()

→ Easy to use

#include <linux/slab.h>

void *kmalloc(size_t size, gfp_t flags);

Memory internally/transparently managed as set of pages

Pages are not necessarily contiguous

size greater than page size might be more difficult to allocate
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Kernel Internals Memory

Dynamic Memory: kmalloc() Flags

Many flags to govern behaviour ...

GFP KERNEL: most commonly used

Might block (triggers swap activity, ...)
→ Can only be called in process context

GFP ATOMIC: for use in non-process context

Scarce resource → use is discouraged

More ...

LDD3

linux/gfp.h
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Kernel Internals Memory

Dynamic Memory: More

Freeing memory

void kfree(const void *);

Allocating zeroed memory

void *kzalloc(size_t size, gfp_t flags)

Freeing and zeroing memory

void kzfree(const void *);

Kernel hacking -¿ Memory Debugging
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Kernel Internals Memory

Dynamic Memory: Debugging
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Kernel Internals Memory

I/O Memory

Device registers mapped into memory

Access is transparent to software

Just like ordinary memory

... but the device listens

→ side effects

Implications

Performance optimization are made at every level

Compiler may reorder memory access
CPU may reorder memory access

→ May twist order of access that’s expected by device
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Kernel Internals Memory

I/O Memory: Reservation

Memory “regions”

Reserved by drivers (physical address, length)

Protection against accidental overlapping access

Shows up in /proc/iomem

No effect otherwise

Access works without
But: no reason not to use it

#include <linux/ioport.h>

struct resource *resource = request_mem_region(

0x20200000, 180, "my-weird-driver");

release_mem_region(0x20200000, 180);
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Kernel Internals Memory

Making I/O Memory Accessible

I/O memory ...

Not directly accessible (as is physical memory in general)

Not managed by struct page (→ later)

I/O Memory Mapping must be created

#include <asm/io.h>

void *base = ioremap(0x20200000, 180);

iounmap(base);
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Kernel Internals Memory

Accessing I/O Memory

Set of access functions that insert the right compiler and memory
barriers ...

Reading

unsigned int ioread8(void *addr);

unsigned int ioread16(void *addr);

unsigned int ioread32(void *addr);

Writing

void iowrite8(u8 value, void *addr);

void iowrite16(u16 value, void *addr);

void iowrite32(u32 value void *addr);

... and a lot more

90 / 106



Kernel Internals Interrupts

Overview

1 How Linux Boots
Overview
Mounting Filesystems
chroot

Bind and Move Mounts
Early Userspace

2 Kernel Management
Kernel Source
Kernel Modules

3 Kernel Internals
Duplicating
Character Devices
Locking
Communication

Memory
Interrupts

4 Realtime
Realtime Preemption
Xenomai

91 / 106



Kernel Internals Interrupts

Interrupts

Interrupt facts

Interrupt context is not scheduled

No sleeping API calls allowed

Not easily debugged

Not easy in general

No prioritization

But ...

Threaded interrupt handlers

... thanks to PREEMPT RT slowly being integrated in mainline
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Kernel Internals Interrupts

Interrupt Service Routine

static irqreturn_t my_isr(int irq, void *userdata)

{

/* ... do something with device ... */

return IRQ_HANDLED;

}

For hard ISRs (as opposed to threaded):

IRQ HANDLED, if interrupt is from device

Especially for shared interrupt lines

IRQ NONE otherwise
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Kernel Internals Interrupts

Requesting and Freeing Interrupts

int error = request_irq(irq_number, my_isr, IRQF_SHARED,

"my-super-driver", userdata);

my isr called as soon as interrupts happen

Attention: line is hot immediately

userdata: “callback” argument to the ISR

Interrupt shows up under my-super-driver in /proc/interrupts

free_irq(irq_number, userdata);

Shared interrupts: userdata must not be NULL

94 / 106



Kernel Internals Interrupts

Interrupt Flags

From <linux/interrupts.h>

IRQF TRIGGER RISING

IRQF TRIGGER FALLING

IRQF TRIGGER HIGH

IRQF TRIGGER LOW
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Kernel Internals Interrupts

Threaded Interrupts

Problem: an interrupt service routine must not sleep

Many devices are on external buses like I2C or SPI

Interrupt triggered via GPIO line
Reading device state is slow
E.g. waits for I2C host controller interrupt
→ sleeps

Not being able to sleep is simply inconvenient

Solution before interrupts became threaded:

Allocate a workqueue (struct workqueue struct)

Basically a kernel worker thread

Defer work there by enqueueing it in the ISR

→ Manual, verbose, error prone, duplicated code
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Kernel Internals Interrupts

Requesting Threaded Interrupts

Two interrupt service routines ...

“Hard” ISR (optional)

Decides whether work must be done → return IRQ WAKE THREAD

IRQ HANDLED or IRQ NONE otherwise

“Threaded” ISR

Executed in process context → freedom!

error = request_threaded_irq(irq_number,

my_hard_isr, my_threaded_isr,

IRQF_SHARED, "my-super-driver", userdata);

Additional advantage

Kernel thread shows up in ps output

→ scheduled

→ Reprioritizable!
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Realtime Realtime Preemption

Realtime in Mainline Linux

Mainline Linux has only Soft Realtime (via SCHED FIFO and SCHED RR and
Priorities) → no guaranteed response times though

Interrupt handler not prioritizable → arbitrary code (even realtime
code) preempted by potentially unimportant code

Spinlocks (spinlock t) disable interrupts → not “preemptible”

Priority inversion possible
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Realtime Realtime Preemption

Realtime Preemption Patch: Overview

Developed by Ingo Molnar (Scheduling) and Thomas Gleixner (Timer
Infrastruktur, etc.)

http://rt.wiki.kernel.org

Separate patches for select kernel versions Kernelversionen

... or through Git,
git://git.kernel.org/pub/scm/linux/kernel/git/rt/

linux-stable-rt.git
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Realtime Realtime Preemption

Realtime Preemption Patch: Goals

Goals: solution of all problems

Interrupt handler in per-interrupt kernel thread

ISR’s prioritizable using established mechanisms
→ by their PIDs

Spinlocks and normal mutexes become RT-Mutexes

Priority inheritance
No spinlocks anymore → critical sections remain preemptible

102 / 106



Realtime Realtime Preemption

Tools

Setting realtime properties (interrupt threads and userland): chrt

CPU affinity : taskset
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Realtime Realtime Preemption

Traps

Swap, memory, code: mlockall(MCL CURRENT|MCL FUTURE)

Stack prefaulting: alloca() and writing

Too much realtime is bad → new dimension of bugs
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