
C++11: Selected Topics

Jörg Faschingbauer

www.faschingbauer.co.at

jf@faschingbauer.co.at

1 / 185

Table of Contents

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

2 / 185

Introduction

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

3 / 185

Introduction

Make C++ Great Again

C++ is one of the ugliest languages in the world

Have to know C, including historical baggage

C preprocessor
No module concept
Implicit conversions
(Many more)

No useful standard library

Every new revision brings new features to solve old problems

4 / 185

Introduction

C++11: The “New” C++

Several years of development (since C++03)

To be followed by C++14

To be followed by C++17

To be followed ...

Focus

Easier usage (sometimes it reads like Python)
Performance

5 / 185

New Language Features

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

6 / 185

New Language Features Strongly Typed enum

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

7 / 185

New Language Features Strongly Typed enum

C++03 enum Types: Motivation

Why enum? Why isn’t int sufficient?

Readability, Semantics

switch statements without default label → -Wswitch warns about
missing enumerators

Type safety: int cannot be assigned to an enum

The other way around is possible

Apart from that, enum is crap!

8 / 185

New Language Features Strongly Typed enum

C++03 enum Types: Problems

Enumerators are not in the enum type’s scope

Rather, they pollute the surrounding scope
→ no two enumerators with the same name

Underlying type is not defined → sizeof depends on compiler

Implicit conversion to int

Workarounds possible, although much typing involved!

9 / 185

New Language Features Strongly Typed enum

C++11 enum class

enum class

enum class E1 {

ONE,

TWO

};

enum class E2 {

ONE,

TWO

};

E1 e1 = E1::ONE;

E2 e2 = E2::ONE;

int i = e1; // error

No conflicts in surrounding
scope

Body same as before

No conversion to int

C++03 enum remains
unchanged → code
compatibility

→ Cool!

10 / 185

New Language Features Strongly Typed enum

C++11 enum class: Underlying Type

Explicite type

#include <cstdint>

#include <cassert>

enum E: uint8_t {

ONE,

TWO

};

void f() {

assert(sizeof(E)==1);

}

In C++03 enum and enum

class possible

Default: int

Works with every integer types
except wchar t

11 / 185

New Language Features auto Type Declarations

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

12 / 185

New Language Features auto Type Declarations

auto Type Declarations: Motivation

Much ado about nothing ...

vector<MyType>::iterator

iter = v.begin();

Compiler knows anyway ...

auto iter = v.begin();

Type Deduction

Compiler knows anyway

He always knew →
lookup of template
specializations

→ Same rules apply

13 / 185

New Language Features auto Type Declarations

auto Type Declarations: Details

Simplest Type Deduction

auto i = 10; // int

cbegin() → const iterator

auto iter = v.cbegin();

const and References

const auto& cref = value;

Arrays are Pointers

int data[42];

// int *no_copy ...

auto no_copy = data;

14 / 185

New Language Features Brace Initialization

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

15 / 185

New Language Features Brace Initialization

Brace Initialization: Motivation (1)

Initialization was always inconsistent → Extremely confusing, especially
for newbies!

Integral types

Aggregates (struct, array)

Class objects

Container (e.g. std::vector) initialization with contained values →
push back() orgies

16 / 185

New Language Features Brace Initialization

Brace Initialization: Motivation (2)

Integral Types

Two different kinds of
initialization

A matter of history

Initialization and
assignment are different

Constructor style
necessary in templates
→ integers have to
behave as if they were
objects

Integer Initialization

int x = 7; // assignment style

int y(42); // ctor style

17 / 185

New Language Features Brace Initialization

Brace Initialization: Motivation (3)

Aggregates

Initialization as it used to be in
good old C

No constructor style

Aggregate Initialization

int arr[] = {1, 2, 3};

struct s { int i,j; }

s s1 = {1, 2};

s s2 = {1}; // s2.j==0

18 / 185

New Language Features Brace Initialization

Brace Initialization: Motivation (4)

Objects

Constructor: looks like function
call

Copy initialization

Object Initialization

class C {

public:

C(int i, int j);

};

C c1(1,2);

C c2 = c1;

19 / 185

New Language Features Brace Initialization

Brace Initialization: Motivation (5)

Containers

Filling containers
is extremely
cumbersome →
.push back()

Initialization
requires an
existing container
→ very very loud

Container Initialization

int arr[] = {1,2,3};

vector<int> v1(arr, arr+3);

vector<int> v2(v1.cbegin(), v1.cend());

set<int> s;

s.insert(1);

s.insert(2);

vector<int> v(s.cbegin(), s.cend());

20 / 185

New Language Features Brace Initialization

Brace Initialization: Motivation (6)

Member Arrays

Cannot be initialized

Must be filled in
constructor body

→ inconsistent

→ loud

→ workarounds

Member Array Initialization

class C {

public:

C() : data_(/*dammit!*/) {}

private:

const int data_[3];

};

21 / 185

New Language Features Brace Initialization

Brace Initialization: Motivation (7)

Arrays on the Heap

Cannot be initialized

→ inconsistent

→ loud

→ workarounds

Heap Array Initialization

const int *arr = new int[42];

// and now?

22 / 185

New Language Features Brace Initialization

Brace Initialization: Solution (1)

Solution: brace initialization everywhere → the language becomes ...

Clear

Readable

Memorizable (less exceptions)

Attractive?

23 / 185

New Language Features Brace Initialization

Brace Initialization: Solution (2)

Braces ...

int i{42};

int arr[]{1,2,3};

struct s { int i,j; }

s s1{1,2};

vector<int> v{1,2,3};

... many more braces

class C {

public:

C() : data_{1,2,3} {}

private:

const int data_[3];

};

const int *arr =

new const int[3]{1,2,3};

24 / 185

New Language Features Range Based for Loops

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

25 / 185

New Language Features Range Based for Loops

Range Based for Loops: Motivation (1)

for looping over containers is very loud ...

Iterators are cumbersome

... albeit necessary

for each not always applicable

→ Why not building it into the language itself?

26 / 185

New Language Features Range Based for Loops

Range Based for Loops: Motivation (2)

Iteration, the cumbersome way

vector<int> v{1,2,3};

for (vector<int>::const_iterator it=v.begin();

it!=v.end();

++it)

cout << *it << endl;

This is cumbersome indeed ...

typedef does not exactly help

Iterators dereferenced by hand

Much too loud

27 / 185

New Language Features Range Based for Loops

Range Based for Loops (1)

Solution: coupling the language with its standard library

The solution

vector<int> v{1,2,3};

for (int i: v)

cout << i << endl;

Almost like Python, isn’t it?

28 / 185

New Language Features Range Based for Loops

Range Based for Loops (2)

Works with the usual auto incarnations ...

Valid for all C++ container types, arrays, initializer lists, etc.

auto Variants

vector<int> v{1,2,3};

for (auto& i: v) i = -i;

for (const auto& i: v)

cout << i << endl;

29 / 185

New Language Features Delegating Constructor

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

30 / 185

New Language Features Delegating Constructor

Delegating Constructor: Motivation

Every constructor does basically the same

class Data

{

public:

Data(const void *p, size_t s) : data_(p), size_(s) {}

Data(const string& s)

: data_(s.c_str()), size_(s.size()) {}

private:

const void *data_;

size_t size_;

};

31 / 185

New Language Features Delegating Constructor

Delegating Constructor: Solution

Constructor delegates

class Data

{

public:

Data(const void *p, size_t s) : data_(p), size_(s) {}

Data(const string& s) : Data(s.c_str(), s.size()) {}

private:

const void *data_;

size_t size_;

};

32 / 185

New Language Features Moving, “RValue References”

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

33 / 185

New Language Features Moving, “RValue References”

“Return Object” Problem: Lifetime (1)

Whole class of problems: lifetime of returned objects

const std::string& f() {

std::string s{"blah"};

return s;

}

const std::string& f() {

return "blah";

}

34 / 185

New Language Features Moving, “RValue References”

“Return Object” Problem: Lifetime (2)

const std::string& f() {

std::string s{"blah"};

return s;

}

Object’s home is on the stack

Returning reference to it

→ “undefined behavior”

Fortunately compilers can detect and warn

warning: reference to local variable ‘s’ returned

std::string s{"blah"};

^

35 / 185

New Language Features Moving, “RValue References”

“Return Object” Problem: Lifetime (3)

const std::string& f() {

return "blah";

}

C string converted to std::string to match return type

Return type being reference is irrelevant

→ temporary object

→ “undefined behavior”

warning: returning reference to temporary

return "blah";

^

36 / 185

New Language Features Moving, “RValue References”

“Return Object” Problem: Lifetime (4)

Solution: return by copy

std::string f() {

return "blah";

}

Before return, construct temporary from "blah"

During return, copy-construct receiver object

After return (during stack frame cleanup), destroy temporary

→ Performance

Though std::string objects are usually reference counted (but not
by standard)
→ Cheap copy

37 / 185

New Language Features Moving, “RValue References”

“Return Object” Problem: Performance

std::vector<int> f() {

std::vector<int> v;

int i=100000;

while (i--)

v.push_back(i);

return v;

}

Semantically correct

Perfectly readable

It’s just that arrays of 100000 elements aren’t copied so lightly

Enter Rvalue References

(Teacher’s note: rvalueref-motivation.cc)

38 / 185

New Language Features Moving, “RValue References”

Move Semantics: Wish List

Wish list:

Copy/assignment as before

Special constructor for moving

Can that be implemented in C++03?

Idea: non-const reference

Exercise

Write a class X that carries an array of int and implements the
usual copy semantics and a proper destructor.

Additionally, for performance, the class provides a constructor that
transfers ownership of the owned buffer.

Try out the scenarios above, and see what’s to be done in order for
the move constructor to (not) be called.

39 / 185

New Language Features Moving, “RValue References”

Move Semantics, in C++03

Clumsy, isn’t it?

Constructor with non-const reference preferred over const

→ Have to be explicit when moving is not wanted — which is the
regular case!

Teacher’s notes:

moving-in-c++03.cc

In none of these use cases (except for function return) I want moving!

Function return is optimized away → Return Value Optimization
(RVO)

40 / 185

New Language Features Moving, “RValue References”

Lvalues and Rvalues (1)

int a = 42;

int b = 43;

a = b; // ok

b = a; // ok

a = a * b; // ok

int c = a * b; // ok

a * b = 42; // error, assignment to rvalue

41 / 185

New Language Features Moving, “RValue References”

Lvalues and Rvalues (2)

Rules ...

Everything that has a name is an Lvalue

Everything that I can assign to is an Lvalue

Everything that I can take the address of is an Lvalue

Everything else is an Rvalue

So ...

Temporaries are clearly Rvalues

As are function calls

42 / 185

New Language Features Moving, “RValue References”

Moving (1)

To make the long story short ...

Compiler will call X(X&&) when
an Rvalue is passed

E.g. function return

Rules are far more complicated

... as is the language

(How about RVO?)

struct X

{

X(X&& x)

: data(x.data),

size(x.size)

{

x.data = 0;

x.size = 0;

}

int *data;

size t size;

};

43 / 185

New Language Features Moving, “RValue References”

Moving (2)

Compiler will DWIM ...

Return “by copy”

Select X(X&&)

Or RVO with copy ctor
X f()

{

return X{"abc"};

}

X x = f();

Ordinary initialization

Select X(const X&) X x{"abc"};

X y = x;

44 / 185

New Language Features Moving, “RValue References”

Moving (3)

Explicitly requesting move operation

X y = std::move(x);

std::move does not do anything the CPU must know

Casts to && to force selection of move-ctor

Usage: std::sort, for example

Rearrange items
→ Copy or move, depending on what’s there

45 / 185

New Language Features Moving, “RValue References”

No C++ Without Pitfalls

Compiler selects function based upon parameter type

Normal overload selection

Once called, the parameter is an lvalue

Careful with moving

Bad

X(X&& x)

: s_(x.s_) {}

Good

X(X&& x)

: s (std::move(x.s))

46 / 185

New Language Features Miscellaneous

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

47 / 185

New Language Features Miscellaneous

nullptr

NULL is insufficient ...

Typ is n ot defined

Could be void*

Or just as well int

→ Ambiguities

nullptr

void f(int);

void f(int*);

f(NULL); // Hell!

f(nullptr); // f(int*)

48 / 185

New Language Features Miscellaneous

Templates end with “>>”

Small parser insufficiency got fixed ...

> > vs. >>

std::map<int,vector<int> > ...;

std::map<int,vector<int>> ...; // C++11: THANK YOU!

→ It’s about time!

49 / 185

Smart Pointers

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

50 / 185

Smart Pointers

Why Smart Pointers?

Most prominent pointer (memory management) related bugs

Memory leak

Double free

Even more so with exceptions

Alternate return path

Requires extra handling for resource cleanup

void do_something() {

MyClass* tmp = new MyClass(666);

do_something_with(tmp); // throws

delete tmp;

...

}

51 / 185

Smart Pointers

Recap: Constructors and Destructors

Deterministic cleanup: at scope exit

Explicit return

End of scope

Exceptions → stack unwinding

52 / 185

Smart Pointers std::unique ptr<>

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

53 / 185

Smart Pointers std::unique ptr<>

Simplest: std::unique ptr<>

#include <memory>

void do_something() {

std::unique_ptr<MyClass> tmp(new MyClass(666));

do_something_with(tmp.get());

...

}

Destructor called at every return path

No leaks

54 / 185

Smart Pointers std::unique ptr<>

std::unique ptr<>: Basic Usage

std::unique ptr<> is a pointer → supports -> and * operators in a
natural way

ptr->do_something();

MyClass copy = *ptr;

55 / 185

Smart Pointers std::unique ptr<>

std::unique ptr<>: Ownership (1)

Question: who is responsible to delete the object?
Answer:

If there is only one that points to it, then he’s responsible

If two point to it, then both are responsible

unique_ptr<MyClass> owner(

new MyClass(666));

Just don’t do it!

MyClass* tmp = new MyClass(666);

unique_ptr<MyClass> owner1(tmp);

unique_ptr<MyClass> owner2(tmp);

56 / 185

Smart Pointers std::unique ptr<>

std::unique ptr<>: Ownership (2)

Shared ownership: how else? → Copy!

unique_ptr<MyClass> owner(new MyClass(666));

unique_ptr<MyClass> another_owner = owner;

Compilation error

... error: use of deleted function ...

Good news ...

std::unique ptr<> is not copyable

Only movable

57 / 185

Smart Pointers std::unique ptr<>

std::unique ptr<>: Ownership Transfer

“Unique” means that there can only be one owner

Passing a std::unique ptr<>

void do_something_with(unique_ptr<MyClass> c);

void do_something()

{

unique_ptr<MyClass> owner(new MyClass(666));

do_something_with(owner);

}

Compilation error

error: use of deleted function ... (copy) ...

58 / 185

Smart Pointers std::unique ptr<>

std::unique ptr<>: Ownership Transfer

Back in C times ...

Ownership conflict

No solution but to be careful

C++ 11: no implicit transfer when using smart pointers → compiler
support for correctness

→ Clarity, no ambiguity

Explicit ownership transfer: std::move

void do_something_with(unique_ptr<MyClass> c);

void do_something()

{

unique_ptr<MyClass> owner(new MyClass(666));

do_something_with(std::move(owner));

assert(owner == nullptr); // owner has given up ownership

}

59 / 185

Smart Pointers std::unique ptr<>

std::unique ptr<>: Juggling

Clearing

unique_ptr<MyClass> owner(new MyClass(666));

owner.reset(); // deletes object

Filling

unique_ptr<MyClass> owner;

owner.reset(new MyClass(666));

Stealing

unique_ptr<MyClass> owner(new MyClass(666));

MyClass* obj = owner.release();

60 / 185

Smart Pointers std::unique ptr<>

std::make unique<>: Pure Decadence

Lazyness

C++ 11 brings lots of tools to save you keystrokes

e.g. auto

std::make unique<>()

auto ptr = make_unique<MyClass>(666);

61 / 185

Smart Pointers std::shared ptr<>

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

62 / 185

Smart Pointers std::shared ptr<>

std::shared ptr<>: Not Unique

Ownership is not always clear ...

Rare occasions where shared ownership is the right design choice

... laziness, mostly

If in doubt, say std::shared ptr<>

#include <memory>

std::shared_ptr<MyClass> ptr(

new MyClass(666));

63 / 185

Smart Pointers std::shared ptr<>

std::shared ptr<>: Copy

Copying is what shared pointer are there for

shared_ptr<MyClass> ptr(

new MyClass(666));

shared_ptr<MyClass> copy1 = ptr;

shared_ptr<MyClass> copy2 = copy1;

64 / 185

Smart Pointers std::shared ptr<>

std::shared ptr<> vs. std::unique ptr<>

How do std::shared ptr<> and std::unique ptr<> compare?

std::unique ptr<>

Small — size of a pointer

Operations compile away entirely

No excuse not to use it

std::shared ptr<>

Size of two pointers

Copying manipulates the resource count

Copying manipulates non-adjacent memory locations

65 / 185

Smart Pointers std::shared ptr<>

std::shared ptr<>: Object Lifetime

How long does the pointed-to object live?

Reference count is used to track share ownership

When reference count drops to zero, the object is not referenced
anymore

→ deleted

Examining the reference count

shared_ptr<MyClass> ptr(new MyClass(666));

auto refcount = ptr->use_count();

Do not make any decisions based on it — at least not when the
pointer is shared among multiple threads!

66 / 185

Smart Pointers std::shared ptr<>

std::shared ptr<>: Juggling

Clearing: reset()

shared_ptr<MyClass> ptr(

new MyClass(666));

auto copy = ptr;

ptr.reset();

Decrements reference
count

Only if it becomes zero,
object is deleted

Filling: reset()

shared_ptr<MyClass> ptr;

ptr.reset(new MyClass(666));

Makes an empty pointer
the initial reference

67 / 185

Smart Pointers Smart Pointers: Closing Words

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

68 / 185

Smart Pointers Smart Pointers: Closing Words

Shared Pointers: Closing Words

Now when to use which pointer?

→ no definitive answer, but ...

Answer 1: performance, and designwise correctness

Always use std::unique ptr<> → clearly defined ownership

Pass object around as pointer (uptr->get())

Use std::shared ptr<> only if we have real shared ownership

Answer 2: programming efficiency

Don’t waste a thought on ownership, simply write it

Always use std::shared ptr<>

69 / 185

Functions, Functions, ...

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

70 / 185

Functions, Functions, ... Optimization

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

71 / 185

Functions, Functions, ... Optimization

Optimization — Introduction

General Rules ...

Focus on clean design → efficiency follows

Optimization near the end of the project

Proven hotspots need optimization

Proof through profiling

“Premature optimization is the root of all evil”
Donald E. Knuth

72 / 185

Functions, Functions, ... Optimization

Compute Bound or IO Bound? (1)

Decide whether, what and how to optimize!

Collect representative input data

Why does the program take long?

Where does it spend most of its time?

Userspace: this is where computation is generally done
Kernel: ideally very little computation

73 / 185

Functions, Functions, ... Optimization

Compute Bound or IO Bound? (2)

Checksumming From An Externel USB Disk

$ time sha1sum 8G-dev.img.xz > /dev/null

real 0m38.879s

user 0m3.349s

sys 0m0.375s

real: total perceived run time (“wall clock time”)

user: total CPU time spent in userspace

sys: total CPU time spent in kernel

Here: user + sys is far less than real → mostly IO

74 / 185

Functions, Functions, ... Optimization

Compute Bound or IO Bound? (3)

Checksumming From Internal SSD

$ time sha1sum 01\ -\ Dazed\ and\ Confused.mp3 1>/dev/null

real 0m0.128s

user 0m0.107s

sys 0m0.018s

Here: user + sys is roughly equal to real

Almost no IO

→ Compute bound

75 / 185

Functions, Functions, ... Optimization

What to do Next?

Now that we know that our application is compute bound ...

See where it spends most of its time → profiling

Decide whether optimization would pay off

Understand what can be done

Understand optimizations that compilers generally perform

76 / 185

Functions, Functions, ... Compute Bound Code

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

77 / 185

Functions, Functions, ... Compute Bound Code

Many Ways of Optimization

There are many ways to try to optimize code ...

Unnecessary ones

Using better algorithms (e.g. sorting and binary search)

Function call elimination (inlining vs. spaghetti)

Loop unrolling

Strength reduction (e.g. using shift instead of mult/div)

Tail call elimination

...

78 / 185

Functions, Functions, ... Compute Bound Code

Unnecessary Optimizations

if (x != 0)

x = 0;

The rumour goes that this is not faster than unconditional writing

Produces more instructions, at least

79 / 185

Functions, Functions, ... Compute Bound Code

Inlining (1)

Facts up front:

Function calls are generally fast

A little slower when definition is in a shared library

Instruction cache, if used judiciously, makes repeated calls even faster

But, as always: it depends

Possible inlining candidate

int add(int l, int r)

{

return l + r;

}

80 / 185

Functions, Functions, ... Compute Bound Code

Inlining (2)

A couple rules

Always write clear code

Never not define a function because of performance reason

Readability first
Can always inline later, during optimization

Don’t inline large functions → instruction cache pollution when called
from different locations

Use static for implementation specific functions → compiler has
much more freedom

81 / 185

Functions, Functions, ... Compute Bound Code

Inlining (3)

GCC ...

Does not optimize by default

Ignores explicit inline when not optimizing

-finline-small-functions (enabled at -O2): inline when function
call overhead is larger than body (even when not declared inline)

-finline-functions (enabled at -O3): all functions considered for
inlining → heuristics

-finline-functions-called-once (enabled at -O1, -O2, -O3,

-Os): all static functions that ...

More → info gcc

82 / 185

Functions, Functions, ... Compute Bound Code

Register Allocation (1)

Register access is orders of magnitude faster than main memory
access

→ Best to keep variables in registers rather than memory

CPUs have varying numbers of registers

register keyword should not be overused
Ignored anyway by most compilers

Register allocation

Compiler performs flow analysis
Live vs. dead variables
“Spills” registers when allocation changes

Compiler generally makes better choices than the programmer!

83 / 185

Functions, Functions, ... Compute Bound Code

Register Allocation (2)

GCC ...

-fira-* (for Integrated Register Allocator)

RTFM please

A lot of tuning opportunities for those who care

84 / 185

Functions, Functions, ... Compute Bound Code

Peephole Optimization

Peephole: manageable set of instructions; “window”

Common term for a group of optimizations that operate on a small
scale

Common subexpression elimination
Strength reduction
Constant folding

Small scale → “basic block”

85 / 185

Functions, Functions, ... Compute Bound Code

Peephole Optimization: Common Subexpression
Elimination

Sometimes one writes redundant code, in order to not compromise
readability by introducing yet another variable ...

a = b + c + d;

x = b + c + y;

This can be transformed to

tmp = b + c; /* common subexpression */

a = tmp + d;

x = tmp + y;

86 / 185

Functions, Functions, ... Compute Bound Code

Peephole Optimization: Strength Reduction

Most programmers prefer to say what they mean (fortunately) ...

x = y * 2;

The same effect, but cheaper, is brought about by ...

x = y << 1;

If one knows the “strength” of the operators involved (compilers tend to
know), then even this transformation can be opportune ...

x = y * 3; /* y*(4-1) == y*4-y */

x = (y << 2) - y;

87 / 185

Functions, Functions, ... Compute Bound Code

Peephole Optimization: Constant Folding

Another one that might look stupid but readable ...

x = 42;

y = x + 1;

... is likely to be transformed into ...

x = 42;

y = 43;

Consider transitive and repeated folding and propagation → pretty results

88 / 185

Functions, Functions, ... Compute Bound Code

Loop Invariants

The following bogus code ...

while (1) {

x = 42; /* loop invariant */

y += 2;

}

... will likely end up as ...

x = 42;

while (1)

y += 2;

At least with a minimal amount of optimization enabled (GCC:
-fmove-loop-invariants, enabled with -O1 already)

89 / 185

Functions, Functions, ... Compute Bound Code

Loop Unrolling

If a loop body is run a known number of times, the loop counter can be
omitted.

for (i=0; i<4; i++)

dst[i] = src[i];

This can be written as

dst[0] = src[0];

dst[1] = src[1];

dst[2] = src[2];

dst[3] = src[3];

Complicated heuristics: does the performance gain outweigh
instruction cache thrashing?

→ I’d keep my fingers from it!

90 / 185

Functions, Functions, ... Compute Bound Code

Tail Call Optimization

int f(int i)

{

do_something(i);

return g(i+1);

}

g() is called at the end

f()’s stack frame is not used afterwards

Optimization: g() can use f()’s stack frame

91 / 185

Functions, Functions, ... Compute Bound Code

CPU Optimization, Last Words

Once more: Write clean Code!

All optimization techniques explained are performed automatically, by
the compiler

Theory behind optimization is well understood → engineering
discipline

Compilers generally perform optimizations better than a programmer
would

... let alone portably, on different CPUs!

“Optimization” is a misnomer → “Improvement”

Compiler cannot make arbitrary code “optimal”
Bigger picture is always up to the programmer
→ Once more: Write clean Code!

Work together with compiler → use static, const

92 / 185

Functions, Functions, ... Compute Bound Code

GCC: Optimization “Levels”

-O0: optimization off; the default

-O1: most basic optimizations; does as much as possible without
compromising compilation time too much

-O2: recommended; does everything which has no size impact, is
unagressive, and doesn’t completely chew compilation time

-O3: highest level possible; somewhat agressive, can break things
sometimes, eats up your CPU and memory while compiling

-Os: optimize for size; all of -O2 that doesn’t increase size

-Og (since GCC 4.8): “developer mode”; turns on options that don’t
interfere with debugging or compilation time

93 / 185

Functions, Functions, ... Basics

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

94 / 185

Functions, Functions, ... Basics

Containers, Iterators, Algorithms

Genius Combination of ...

Operator overloading (->, *, +, +=, ++)

Abstract containers

Abstract “Algorithms”

... based upon pointer arithmetic!

→ Pointer arithmetic, revisited ...

95 / 185

Functions, Functions, ... Basics

Pointer Arithmetic (1)

Pointer and arrary index

Pointer + Integer =
Pointer

Exactly the same as
subscript (“index”)
operator

No range check

→ Error prone

But: performance!

96 / 185

Functions, Functions, ... Basics

Pointer Arithmetic (2)

Pointer Increment

int *pa = a;

++pa;

Pointer Decrement

int *pa = &a[1];

--pa;

97 / 185

Functions, Functions, ... Basics

Pointer Arithmetic (3)

Pointer don’t necessarily point to valid memory locations ...

*pa = a + 4;

pa -= 2;

i = *pa; /* ok */

*pa = a - 1;

pa += 2;

i = *pa; /* ok */

98 / 185

Functions, Functions, ... Basics

Pointer Arithmetic: Difference

How many array elements are there between two pointers?

p = &a[0];

q = &a[2];

num = q - p; /* 2 */

General practice (“The Spirit of C”):

Beginning of an array (a set of elements) is a pointer to the first
element

End is pointer past the last element

99 / 185

Functions, Functions, ... Basics

Pointer Arithmetic: Array Algorithms

Iteration over all elements of an array ...

int sum(const int *begin, const int *end)

{

int sum = 0;

while (begin < end)

sum += *begin++; /* precedence? what? */

return sum;

}

Pretty, isn’t it?

100 / 185

Functions, Functions, ... Basics

Pointer Arithmetic: Step Width? (1)

So far: pointer to int int — how about different datatypes?
→ same!

pointer + n: points to the n-th array element from pointer

Type system knows about sizes

Pointer knows the type of the data it points to

Careful with void and void*

101 / 185

Functions, Functions, ... Basics

Pointer Arithmetic: Step Width? (2)

struct point

{

int x, y;

};

struct point points[3], *begin, *end;

begin = points;

end = points + sizeof(points)/sizeof(struct point);

while (begin < end) {

...

++begin;

}

102 / 185

Functions, Functions, ... Basics

Pointer Arithmetic: Arbitrary Data Types?

sizeof : size (in bytes) of
a type or variable

sizeof(int)

sizeof(struct point)

sizeof(i)

sizeof(pi)

sizeof(pp)

103 / 185

Functions, Functions, ... Basics

Container

Container

Extremely practical collection of template classes

Sequential container → array, list

Associative containers

104 / 185

Functions, Functions, ... Basics

Dynamically growing array: std::vector

#include <vector>

std::vector<int> int_array;

int_array.push_back(42);

int_array.push_back(7);

int_array.push_back(666);

for (int i=0; i<int_array.size(); ++i)

std::cout << int_array[i] << ’ ’;

105 / 185

Functions, Functions, ... Basics

Pointer Arithmetic

std::vector<int>::const_iterator begin = int_array.begin();

std::vector<int>::const_iterator end = int_array.end();

while (begin < end) {

std::cout << *begin << ’ ’;

++begin;

}

106 / 185

Functions, Functions, ... Basics

Algorithms: std::copy (1)

Copy array by hand

std::vector<int> int_array;

int_array.push_back(42);

int_array.push_back(7);

int_array.push_back(666);

int int_array_c[3];

std::vector<int>::const_iterator src_begin = int_array.begin();

std::vector<int>::const_iterator src_end = int_array.end();

int *dst_begin = int_array_c;

while (src_begin < src_end)

*dst_begin++ = *src_begin++;

107 / 185

Functions, Functions, ... Basics

Algorithms: std::copy (2)

Copy using STL

#include <algorithm>

std::vector<int> int_array;

// ...

int int_array_c[3];

std::copy(int_array.begin(), int_array.end(), int_array_c);

108 / 185

Functions, Functions, ... Basics

Adapting Iterators: std::ostream iterator

Copy: array to std::ostream, which looks like another array

#include <iterator>

int int_array_c[] = { 34, 45, 1, 3, 2, 666 };

std::copy(int_array_c, int_array_c+6,

std::ostream_iterator<int>(std::cout, " "));

std::vector<int> int_array;

// ...

std::copy(int_array.begin(), int_array.end(),

std::ostream_iterator<int>(std::cout, " "));

109 / 185

Functions, Functions, ... Basics

Adapting Iterators: std::back insert iterator (1)

Problem

std::copy() requires existing/allocated memory → performance!

→ copying onto empty std::vector impossible

Segmentation Fault

int int_array_c[] = { 34, 45, 1, 3, 2, 666 };

std::vector<int> int_array; // empty!

std::copy(int_array_c, int_array_c+6, int_array.begin());

110 / 185

Functions, Functions, ... Basics

Adapting Iterators: std::back insert iterator (2)

Solution: std::back insert iterator

int int_array_c[] = { 34, 45, 1, 3, 2, 666 };

std::vector<int> int_array;

std::copy(

int_array_c, int_array_c+6,

std::back_insert_iterator<std::vector<int> >(int_array));

111 / 185

Functions, Functions, ... Sorting

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

112 / 185

Functions, Functions, ... Sorting

Algorithms: std::sort

Now for something simple ...

C

int int_array[] = { 34, 45, 1, 3, 2, 666 };

std::sort(int_array, int_array + 6);

C++

std::vector<int> int_array;

int_array.push_back(42);

int_array.push_back(7);

int_array.push_back(666);

std::sort(int_array.begin(), int_array.end());

113 / 185

Functions, Functions, ... Sorting

Algorithms: std::sort, custom comparison

bool less_reverse(int l, int r)

{

return l > r;

}

int int_array[] = { 34, 45, 1, 3, 2, 666 };

std::sort(int_array, int_array + 6, less_reverse);

114 / 185

Functions, Functions, ... std::bind

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

115 / 185

Functions, Functions, ... std::bind

std::bind: Why?

Why? What’s the problem?
Answer:

Hard to explain

Best to see the problem first

Let’s start small, by simple example

Problem: we have ...

Two dimensional points (x,y)

A function to compute the distance between two points

We want:

A function to compute the distance from origin (0,0)

116 / 185

Functions, Functions, ... std::bind

What We Have

Point

struct Point

{

Point(double x, double y)

: x(x), y(y) {}

double x, y;

};

Distance

double distance(Point p, Point q)

{

return std::sqrt(

std::pow(std::abs(p.x-q.x), 2) +

std::pow(std::abs(p.y-q.y), 2)

);

}
117 / 185

Functions, Functions, ... std::bind

Retro C/C++

We have all that is needed

Could easily define a small function

→ Problem solved

But this would be soo retro!

Distance from Origin

double distance_origin(Point p)

{

return distance(p, {0,0});

}

118 / 185

Functions, Functions, ... std::bind

The Real Problem

Nothing is wrong with small functions

Compiler will inline them

... and optimize away entirely

Defined centrally (public header file?) for further reuse

But...

What if they serve only one purpose?

Sample Problem

Compute the origin-distances of an array of points, and store those in an
equally sized array of double!

119 / 185

Functions, Functions, ... std::bind

Straightforward Implementation

Near the top of the implementation file ...

One-Time Function Definition

static double distance_origin(Point p) {

return distance(p, {0,0});

}

And far down below, in the implementation section ...

Location of use

double distances_origin[sizeof(swarm)/sizeof(Point)];

std::transform(swarm, swarm+sizeof(swarm)/sizeof(Point),

distances_origin,

distance_origin);

120 / 185

Functions, Functions, ... std::bind

More Sample Problems

Another Sample Problem

Compute the distances of an array of points from a given point, and store
those in an equally sized array of double!

Possible solutions: as many as there are different tastes around ...

Lets write another stupid function, basically a copy of
distance origin — only with (1,1) instead of (0,0)

Even better: lets generalize! Functors! Function call operator!

121 / 185

Functions, Functions, ... std::bind

More Straightforward Implementations

One-Time Functor Definition

struct distance_point {

distance_point(Point origin) : origin(origin) {}

double operator()(Point p) const {

return distance(p, origin);

}

Point origin;

};

Location of use

double distances_origin[sizeof(swarm)/sizeof(Point)];

std::transform(swarm, swarm+sizeof(swarm)/sizeof(Point),

distances_point,

distance_point({1,1}));

122 / 185

Functions, Functions, ... std::bind

Readability

Provided that the helper code is only used once ...

Readability is inversely proportional to amount of code

Number of bugs is directly proportional to amount of code

Helper implementation is nowhere near location of use

static is the only keyword that enhances readability

Similar problem with many data structures and algorithms ...

Sorting criteria: std::sort, std::map, ...

Predicates: std::find if, std::equal, ...

Arbitrary adaptations where helper functions are needed

Most prominent (although relatively useless nowadays):
std::for each

123 / 185

Functions, Functions, ... std::bind

Introducing std::bind (1)

Best done by example ...

void f(int a, int b) {

std::cout << a << ’,’ << b << std::endl;

}

Direct function call

f(1, 2);

prints ...

1,2

What if we need the functionality of f(a, b), but are required to pass a
callable that taken no parameters?

124 / 185

Functions, Functions, ... std::bind

Introducing std::bind (2)

In other words, we need to create a function-like object that wraps
f(a,b) that always calls f with, say, a=1 and b=2.

Hardcoded parameters

auto bound = std::bind(f, 1, 2);

bound();

prints ...

1,2

Alternative: manually write function adaptor (functor) that
remembers parameters until called

Origin: Boost (www.boost.org)

125 / 185

www.boost.org

Functions, Functions, ... std::bind

Introducing std::bind (3)

Routing parameters into arbitrary positions: std::placeholders

Hardcoding only second parameter

auto bound = std::bind(f,

42, std::placeholders::_1);

bound(7);

prints ...

42,7

Exchanging parameters

auto bound = std::bind(f,

std::placeholders::_2,

std::placeholders::_1);

bound(1,2);

prints ...

2,1

126 / 185

Functions, Functions, ... std::bind

Applying std::bind (1)

So how does this apply to our std::transform problem?

Readability: we want to eliminate those annoying extra helper
functions

Want to wrap existing double distance(Point, Point) which is
similar in purpose but does not fit exactly

What we have ...

struct Point {...};

double distance(Point, Point);

What we want ...

std::transform(swarm, swarm+sizeof(swarm)/sizeof(Point),

distances_point,

SOMETHING WHICH TAKES ONE POINT);

127 / 185

Functions, Functions, ... std::bind

Applying std::bind (2)

Distances from origin

std::transform(swarm, swarm+sizeof(swarm)/sizeof(Point),

distances_origin,

std::bind(distance,

Point{0,0}, std::placeholders::_1));

Distances from any point

// this is exactly the same as above

Summary

Readability: what remains unreadable is only the language itself

Have to get used to std::bind

128 / 185

Functions, Functions, ... std::bind

std::bind vs. Lambda

Lambdas are usually a better alternative ...

std::transform(swarm, swarm+sizeof(swarm)/sizeof(Point),

distances_origin,

[](Point p) { return distance({0,0}, p); });

A more advanced exercise

Use std::sort to sort an array of points by their distance to a given
point.

129 / 185

Functions, Functions, ... std::bind

A Bigger Picture: Types

What about types?

Goal is to have no runtime overhead

=⇒ Late binding (polymorphism) ruled out

=⇒ No common base class

Only the call signatures (parameter and return types) are the same

What does this mean?

Perfect for <algorithm> which is also designed for speed

Have to be careful when code size is important

Client code has to be instantiated with the type

Tradeoff: speed, code size, elegance, design, taste ...

130 / 185

Functions, Functions, ... std::function

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

131 / 185

Functions, Functions, ... std::function

Classic Polymorphism

Back to classic Object Oriented Design ...

Interfaces define what methods have to be available on an object
Implementations provide those methods
Clients use interfaces

(Teacher’s note: classic-polymorphism.cc)

132 / 185

Functions, Functions, ... std::function

Classic Polymorphism: Upsides

Polymorphism is well understood:

Late binding : client does not know the exact type that is being used

Interfaces describe relationships in almost human language — if done
right

Software Architecture — if done right — is almost self-explanatory

Design Patterns are described (and mostly implemented as well) in
such a way

Also available in other languages

For example Java explicitly distinguishes between interface and
implementation

133 / 185

Functions, Functions, ... std::function

Classic Polymorphism: Technical Downsides

There are purely technical downsides (in C++ at least)

Runtime overhead

Not knowing the exact type implies indirect call (function
pointer/trampoline)

Code size

If one writes virtual, a whole bunch of code is generated (Runtime
Type Information — RTTI)
Type is not POD (plain old data) anymore

134 / 185

Functions, Functions, ... std::function

Classic Polymorphism: More Downsides

Metaphysical downsides are harder to come by: readability again

Provided that logging has no architectural relevance ...

I have two functions which are similar in purpose, but otherwise
unrelated. How can I arrange for client code to use these
interchangeably?

Why can’t I just use them?
I don’t want to instantiate client code from a template!
Do I really want to craft an interface for client code to use?

I have a class that has similar purpose as the functions

Client code wants to just call it

I want to adapt all these!

Sound like the solution is std::bind

→ Wrong: std::bind objects don’t share a type

(Teacher’s note: classic-polymorphism-logger.cc)

135 / 185

Functions, Functions, ... std::function

std::function to the Rescue (1)

One type to rule them all!

→ Any callable with same signature

Function object

std::function<int(int, int)> foo_func;

Trivial: plain function

int foo(int a, int b) { ... }

foo_func = foo;

136 / 185

Functions, Functions, ... std::function

std::function to the Rescue (2)

Any std::bind object

struct bar {

int foo(int a, int b) { ... }

};

foo_func = std::bind(&bar::foo, &bar,

std::placeholders::_1, std::placeholders::_2);

Lambda

foo_func = [](int a, int b) -> int { ... };

137 / 185

Functions, Functions, ... std::function

std::function: Last Words

Upsides

Lightweight Polymorphism: no code explosion

Unlike heavyweight polymorphism, no dynamic allocation appropriate

Although a std::function object can hold polymorphic callables, it is
always the same size

Downsides

Runtime overhead due to indirect call

Processor support makes them just as fast as direct function calls
But: no inlining possible

Readability again ...

This is not OO!
Architectural intentions not at all obvious through quick inline
adaptations

138 / 185

Multithreading

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

139 / 185

Multithreading Threads Inroduction

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

140 / 185

Multithreading Threads Inroduction

Operating System Primitives

C++ does not implement threads

They only wrap OS primitives

POSIX Threads → man pthreads

Windows → MSDN
Embedded OSen?

141 / 185

Multithreading Threads Inroduction

There Be Dragons

Threads are the work of the devil!

Everything that used to be correct in a singlethreaded world is
questionable in the face of threads

Race conditions, even in the most innocent looking places

Corollary:

A project that was designed without threads in mind is useless with
threads

Multithreading has to be planned from the beginning

Creation of a new thread must be justified to God

That being said ...

142 / 185

Multithreading Thread Life Cycle

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

143 / 185

Multithreading Thread Life Cycle

Thread Life Cycle

pthread create() creates new thread

Start function is called

Thread terminates

pthread join() synchronizes with
termination (fetches “exit status”)

No parent/child relationship → anybody can
join

144 / 185

Multithreading Thread Life Cycle

Thread Creation

man 3 pthread create

int pthread_create(

pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg);

thread: ID of the new thread (“output” parameter)

attr → see later (NULL → default attribute)

start routine: thread start function, void*/void*

arg: parameter of the start function

145 / 185

Multithreading Thread Life Cycle

Thread Termination (1)

Thread termination alternatives:

Return from start function

pthread exit() from somewhere inside the thread (cf. exit() from
a process)

pthread cancel() from outside (cf. kill())

exit() of the entire process → all contained threads are terminated

Don’t use pthread cancel() unless you know what you are doing!

146 / 185

Multithreading Thread Life Cycle

Thread Termination (2)

Without any further ado: the manual ...

man 3 pthread exit

void pthread_exit(void *retval);

man 3 pthread cancel

int pthread_cancel(pthread_t thread);

147 / 185

Multithreading Thread Life Cycle

Exit Status, pthread join()

A thread’s “exit status”:

void*, just like the start parameter → more flexible than a process’s
int.

Parameter to pthread exit()

Return type of the start function

man 3 pthread join

int pthread_join(pthread_t thread, void **retval);

148 / 185

Multithreading Thread Life Cycle

Detached Threads

Sometimes one does not want to use pthread join()

Rather, run a thread in the “background”.

“Detached” thread

Thread attribute

man 3 pthread attr setdetachstate

int pthread_attr_setdetachstate(

pthread_attr_t *attr, int detachstate);

PTHREAD_CREATE_DETACHED

Threads that are created using attr will be created in a

detached state.

Detaching at runtime ...

man 3 pthread detach

int pthread_detach(pthread_t thread);

149 / 185

Multithreading Thread Life Cycle

Thread ID

pthread create() returns pthread t to the caller

Thread ID of calling thread: pthread self()

Compare using pthread equal()

man 3 pthread self

pthread_t pthread_self(void);

man 3 pthread equal

int pthread_equal(pthread_t t1, pthread_t t2);

150 / 185

Multithreading Thread Life Cycle

“Scheduled Entities” (1)

Kernel maintains “scheduled entities” (Process IDs, “1:1” scheduling)

Threads inside firefox

$ ps -eLf|grep firefox

$ ls -1 /proc/30650/task/

13960

13961

... (many more) ...

151 / 185

Multithreading Thread Life Cycle

“Scheduled Entities” (2)

Too bad:

Scheduled entity’s ID is not the same as pthread t

Correlation of OS threads and POSIX thread is Linux specific

man 2 gettid

pid_t gettid(void);

152 / 185

Multithreading Threads in C++

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

153 / 185

Multithreading Threads in C++

Creating Threads is Far Too Easy

No parameterization

void f() { ... }

std::thread t(f);

std::bind?

void f(int i) { ... }

std::thread t(f, 666);

Lambdas

std::thread t([](){ ... });

Looks all pretty familiar, no?

154 / 185

Multithreading Threads in C++

Joinable vs. Detached

Why wait for termination?

Wait for a calculation to finish

Distribute parallelizable algorithm over multiple CPUs

Graceful program termination

Synchronize caller with termination of t

t.join();

Why detach a thread?

Background service thread → program lifetime

Detach a thread

t.detach();

155 / 185

Multithreading Threads in C++

Cornercases in Thread Lifetime

What if the program terminates before a thread?

int main() { std::thread t([](){for(;;);}); }

On Linux, at least ...

When a process terminates, all its threads terminate immediately

Can I terminate a thread without its cooperation?

In Linux, yes, theoretically

What happens with locked mutexes?

→ Cancellation hooks (hell!)

Portably, no!

156 / 185

Multithreading Race Conditions

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

157 / 185

Multithreading Race Conditions

Exercises: Thread Creation, Race Condition

Write a program that creates two threads. Each one of the threads
increments the same integer, say, 10000000 times.

The integer is shared between both threads (allocated in the main()

function). A pointer to it gets passed to the thread start function.
The threads don’t increment a copy of the integer, but rather access
the same memory location.

After the starting process (the main thread) has synchronized with
the incrementer’s termination, he outputs the current value of the
said integer.
What do you notice?

158 / 185

Multithreading Race Conditions

Race Conditions (1)

Suppose inc() is executed by at
least two threads in parallel:

Very bad code

static int global;

void inc()

{

global++;

}

CPU A CPU B

Instr Reg Instr Reg Mem

load 42 load 42 42
inc 43 inc 43 42

43 store 43 43
store 43 43 43

The variable global has
seen only one increment!!

“Load/Modify/Store
Conflict”

The most basic race
condition

159 / 185

Multithreading Race Conditions

Race Conditions (2)

Imagine more complex data structures (linked lists, trees): if
incrementing a dumb integer bears a race condition, then what can we
expect in a multithreaded world?

No single data structure of C++’s Standard Template Library is
thread safe

std::string’s copy construktor and assignment operator are thread
safe (GCC’s Standard C++ Library → not by standard)

std::string’s other methods are not thread safe

stdio and iostream are thread safe (by standard since C++11)

160 / 185

Multithreading Volatile

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

161 / 185

Multithreading Volatile

volatile: The Lie (1)

What volatile does:

Prevents compiler optimization of everything involving the variable
declared volatile

Corollary: the variable must not be kept in a register

volatile int x;

Attention:

All it does is provide a false impression of correctness

Most of its uses are outright bugs

162 / 185

Multithreading Volatile

volatile: The Lie (2)

What volatile doesn’t:
Variable can still be in a cache

Variable is not at all sync with memory when using write-back cache
strategy

Not a memory barrier → load/store reordering still possible (done by
CPU, not by compiler)

→ Not a replacement for proper locking

Still broken: load-modify-store

volatile int use_count;

void use_resource(void)

{

do_something_with_shared_resource();

use_count++;

}

163 / 185

Multithreading Volatile

volatile: Valid Use: Hardware

Originally conceived for use with hardware registers

Optimizing compiler would wreak havoc
Loops would never terminate
Memory locations would not be written to/read from
...

volatile int completion_flag;

volatile int out_word;

volatile int in_word;

int communicate(int word)

{

out_word = word;

while (!completion_flag);

return in_word;

}

164 / 185

Multithreading Volatile

volatile: Valid Use: Unix Signal Handlers

A variable might change in unforeseeable ways

Signal handler modifies quit variable

Optimizing compiler would otherwise make the loop endless

volatile int quit;

int main(void)

{

while (!quit)

do_something();

}

165 / 185

Multithreading std::chrono

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

166 / 185

Multithreading std::chrono

std::chrono

Time is complex

... and so is std::chrono

Time points, starting at Epoch

E.g. Good (?) old time t, in seconds since 1970-01-01 00:00:00

Multiple clock domains, each with their own notion of time points
(varying in epoch and time unit)

Duration

Difference between time points
Time point — duration between time point’s epoch and itself

167 / 185

Multithreading std::chrono

Clock Domains

system clock

“Wall clock time”, based upon the system’s notation of time.
Unix: time t, starting 1970-01-01, in seconds.
Not monotonic — modified by e.g. NTP

steady clock

Starts at arbitrary timepoint — commonly system boot
Monotonic : advances steadily
E.g. POSIX’s CLOCK MONOTONIC

high resolution clock

“High resolution timers” — ultimately, this is “brand new hardware”
Usually used to formulate high-precision wait periods etc.

168 / 185

Multithreading std::chrono

Measuring Time (1)

A snapshot of time: a clock domain’s time point

Now

#include <chrono>

std::chrono::system clock::time point now =

std::chrono::system clock::now();

169 / 185

Multithreading std::chrono

Measuring Time (2)

Duration: difference between points

Duration

std::chrono::steady clock::duration spent = after - before;

std::chrono::milliseconds spent milli =

std::chrono::duration cast<std::chrono::milliseconds>

(spent);

std::cout << spent milli.count() << std::endl;

Note: use steady clock time points to compute intervals — other clock
are not immune against time modifications

170 / 185

Multithreading Locking and Atomics

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

171 / 185

Multithreading Locking and Atomics

Mutex

Exclusive lock

Can be taken by only one thread

Methods:

lock: take (and possibly wait for) lock
unlock
try lock: take lock, or return error if locked

#include <mutex>

std::mutex lock;

lock.lock();

... critical section ...

lock.unlock();

172 / 185

Multithreading Locking and Atomics

Scoped Locking (1)

What if a critical section throws?

lock.lock();

do_something_errorprone(); // possibly throws

do_more_of_it(); // possibly throws

lock.unlock();

Lock remains locked

→ Deadlock

173 / 185

Multithreading Locking and Atomics

Scoped Locking (2)

Deterministic destructors

Objects are destroyed at end of block

Unlike Java, Python, ... (garbage collection)

→ Exception safety!

std::lock guard
...

// critical section

{

std::lock_guard<std::mutex> g(lock); // lock.lock()

do_something_errorprone();

do_more_of_it();

// ~guard does lock.unlock();

}

...

174 / 185

Multithreading Locking and Atomics

Mutex: Pros and Cons

Mutexes are heavyweight

Context switch on wait → expensive

Can only be used in thread context

Interrupts cannot wait

→ Never share mutexed objects with an interrupt routine!

→ Undefined behavior

Mutexes are easy

Can protect arbitrarily long critical sections

175 / 185

Multithreading Locking and Atomics

Atomic Instructions (1)

Simple integers don’t need a mutex → atomic instructions

GCC: atomic built-ins

static int global;

void inc() {

__sync_fetch_and_add(&global, 1);

}

Windows

static LONG global;

void inc() {

InterlockedIncrement(&global);

}

176 / 185

Multithreading Locking and Atomics

Atomic Instructions (2)

#include <atomic>

std::atomic<int> global(0);

void inc() {

global++;

}

Specializations for all types that are capable

177 / 185

Multithreading Locking and Atomics

Self-Deadlocks (1)

Deadlocks: one more dimension in bug-space

Usually between two threads

Self-deadlock: between one thread

The most obvious self-deadlock

std::mutex lock;

...

lock.lock();

lock.lock(); // wait forever

178 / 185

Multithreading Locking and Atomics

Self-Deadlocks (2)

(Only slightly) more intelligent ways to lock the same mutex twice ...

Calling a callback while holding the lock

What?
Passing control to untrusted code when critical??

Public method uses another public method of the same object

→ Safer: distinguish between “locked” (public) and “unlocked”
(private) methods
“locked” may only use “unlocked”

→ Design decision

179 / 185

Multithreading Locking and Atomics

Working Around Self-Deadlocks: Recursive Mutex

Recursive mutex ...

Same thread can enter an arbitrary number of times

Has to exit exactly as many times to release the mutex for other
threads

The most obvious self-deadlock

std::recursive_mutex lock;

...

lock.lock(); // locked for others

lock.lock(); // granted

// ...

lock.unlock();

lock.unlock(); // released for others

180 / 185

Multithreading Communication

Overview

1 Introduction

2 New Language Features
Strongly Typed enum

auto Type Declarations
Brace Initialization
Range Based for Loops
Delegating Constructor

Moving, “RValue
References”
Miscellaneous

3 Smart Pointers
std::unique ptr<>

std::shared ptr<>

Smart Pointers: Closing
Words

4 Functions, Functions, ...
Optimization
Compute Bound Code
Basics
Sorting
std::bind

std::function

5 Multithreading

Threads Inroduction
Thread Life Cycle
Threads in C++
Race Conditions
Volatile
std::chrono

Locking and Atomics
Communication

181 / 185

Multithreading Communication

Condition Variables

Condition Variable

The most basic communication device

Everything else can be built around it (and a mutex)

Semaphores
Events
Message queues
Promises and futures (→ later)

Best done by example

condvar-message-queue.cc

while instead of if → Spurious Wakeups!

182 / 185

Multithreading Communication

More Communication: Future

Problem:

Worker thread calculates something in the background

Somebody waits (synchronizes) for that something to become ready

That something will become ready in the future

Solution:

condvar-future.cc

Manually coded Future communication device
In terms of good old condition variable and mutex

183 / 185

Multithreading Communication

std::promise and std::future

Same scenario, but different responsibilities

Somebody promises to have something ready in the future

Two objects ...

std::promise is used by producer (the one who promises)
std::future is used by consumer (who relies on the promise that has
been made)

Best done by example

promise-future.cc

184 / 185

Multithreading Communication

Notes

185 / 185

	Introduction
	New Language Features
	Strongly Typed enum
	auto Type Declarations
	Brace Initialization
	Range Based for Loops
	Delegating Constructor
	Moving, ``RValue References''
	Miscellaneous

	Smart Pointers
	std::unique_ptr<>
	std::shared_ptr<>
	Smart Pointers: Closing Words

	Functions, Functions, ...
	Optimization
	Compute Bound Code
	Basics
	Sorting
	std::bind
	std::function

	Multithreading
	Threads Inroduction
	Thread Life Cycle
	Threads in C++
	Race Conditions
	Volatile
	std::chrono
	Locking and Atomics
	Communication

