
Systems Programming in Linux

Jörg Faschingbauer

www.faschingbauer.co.at

jf@faschingbauer.co.at

1 / 359



Table of Contents

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

2 / 359



Building Blocks of Unix and Linux

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

3 / 359



Building Blocks of Unix and Linux Overview

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

4 / 359



Building Blocks of Unix and Linux Overview

Central Concepts

Kernel

Userspace

Prozess

File descriptor

... and a couple more

5 / 359



Building Blocks of Unix and Linux Processes and Threads

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

6 / 359



Building Blocks of Unix and Linux Processes and Threads

Processes

Separate Address Spaces

Access violations

Attributes (UID, GID, CWD, ...)

Resource limits

...

7 / 359



Building Blocks of Unix and Linux Processes and Threads

Threads - “Lightweight Processes”

Threads (aka lightweight processes) ...

Are part of a process

Share the address space of the entire process (for good?)

→ Synchronization mechanisms

→ Communication mechanisms

Not originally part of Unix

→ don’t behave well if one does not take care

8 / 359



Building Blocks of Unix and Linux Processes and Threads

Scheduling

Kernel grants CPU resources to processes (and threads)

Processes and threads are equally important

Traditional: fair scheduling → no guarantees who’s next

Realtime options; really fit for time critical applications

9 / 359



Building Blocks of Unix and Linux Filesystem

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

10 / 359



Building Blocks of Unix and Linux Filesystem

Filesystem

There is only on hierarchy, starting at the Root Directory (’/’). Consists of

Directories

Files

Hard- and softlinks

Device Special Files

Extended through mounts at mount points

11 / 359



Building Blocks of Unix and Linux Filesystem

Everything is a File

File descriptors (and processes) are the central concept in Unix

... and especially in Linux

12 / 359



Building Blocks of Unix and Linux Kernel

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

13 / 359



Building Blocks of Unix and Linux Kernel

Kernel (1)

Makes sure that “Userspace” is comfortable:

Linear address space, with swap

Preemptive multitasking → Fairness

No interrupts which can do harm. Well, not really: there are signals!

Individuals are protected against each other

Hardware is not visible as such

14 / 359



Building Blocks of Unix and Linux Kernel

Kernel (2)

Facts:

There is no process named “kernel”! Kernel is the sum of all
processes running in the system, together with hardware interrupts.

A process changes to Kernel Mode by issuing System Calls

In Kernel Mode he can do anything he wants

15 / 359



Building Blocks of Unix and Linux User Space

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

16 / 359



Building Blocks of Unix and Linux User Space

User Space

Protected area where the “normal” programs live

Per-process, infinite address spaces

Shell

C-Library

Nice programming paradigms which we’ll get to know shortly

17 / 359



Demo Sessions

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

18 / 359



Demo Sessions

Now for Some Examples

All those basic concepts are interwoven

No process without a current working directory

Who creates files? Only processes do.

Who creates userspace at boot? Who starts the first process?

Where would the kernel find the first program? (On the root
filesystem)

...

Examples welcome ...

19 / 359



Demo Sessions Processes

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

20 / 359



Demo Sessions Processes

The Shell, demystified (1)

Starting a program, non-destructively

$ sleep 10

...

$

Here the following happens:

Shell generates a child process and waits until it terminates

Child executes /usr/bin/sleep

Child terminates

21 / 359



Demo Sessions Processes

The Shell, demystified (2)

Starting a program, destructively

$ exec sleep 10

What was that?!

22 / 359



Demo Sessions Processes

Separation between Process and Executable

In Windows, creating a process is executing a program:

CreateProcess() create a new process by starting a program from
an executable file

Unix is different:

fork() creates a new process. Same executable, exact copy of
parent’s address space.

exec() Loads an executable into the running process’s address space
— replacing the current content.

23 / 359



Demo Sessions Processes

The proc Filesystem

Virtual file system that provides a view into the system. For example:

/proc/self

$ ls -l /proc/self

lrwxrwxrwx 1 root root ... /proc/self -> 3736

$ ls -l /proc/self

lrwxrwxrwx 1 root root ... /proc/self/

Please poke around!
Price question: why is /proc/self/exe a link to /bin/ls?

24 / 359



Demo Sessions Processes

Executable?

Permissions

$ ls -l /bin/ls

-rwxr-xr-x 1 root root 109736 Jan 28 18:13 /bin/ls

The file’s name is not ls.exe, but rather it is executable.

25 / 359



Demo Sessions Processes

Executable: Shared Libraries

Shared Libraries

$ ldd /bin/ls

linux-vdso.so.1 => (0x00007fff15b69000)

librt.so.1 => /lib/librt.so.1 (0x00007fa763546000)

libacl.so.1 => /lib/libacl.so.1 (0x00007fa76333d000)

libc.so.6 => /lib/libc.so.6 (0x00007fa762fe4000)

libpthread.so.0 => /lib/libpthread.so.0 (0x00007f...

/lib64/ld-linux-x86-64.so.2 (0x00007fa76374f000)

libattr.so.1 => /lib/libattr.so.1 (0x00007fa762bc...

26 / 359



Demo Sessions Processes

Executable: Memory Mappings

Virtual memory is used to compose the memory layout of a process:

/proc/<pid>/maps

$ cat /proc/self/maps

00400000-0040b000 r-xp 00000000 08:02 1375644 /bin/cat

0060a000-0060b000 r--p 0000a000 08:02 1375644 /bin/cat

0060b000-0060c000 rw-p 0000b000 08:02 1375644 /bin/cat

...

27 / 359



Demo Sessions Everything is a File

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

28 / 359



Demo Sessions Everything is a File

Simple is beautiful

One sometimes has to think more to reach simplicity.
This pays off a thousand times.

29 / 359



Demo Sessions Everything is a File

Ok: a File is a File

A file is a file. That’s simple. There are tools explicitly made to read and
write files, everybody can use these.

Write to a File

$ echo Hello > /tmp/a-file

Read from a File

$ cat /tmp/a-file

Hello

30 / 359



Demo Sessions Everything is a File

Is a Serial Interface a File?

Why not? Data go out and come in!

Write into the Cable

$ echo Hello > /dev/ttyUSB0

Read off the Cable

$ cat /dev/ttyUSB1

Hello

31 / 359



Demo Sessions Everything is a File

Pseudo Terminals

History: login via a hardware terminal, connected through a serial line

Terminal (TTY) layer (in the kernel) implements session management

Pseudo Terminal : software instead of cable

Consequentially, output to a pseudo terminal is like writing to a cable, err,
file.

Write to a Pseudo Terminal

$ echo Hello > /dev/pts/0

32 / 359



Demo Sessions Everything is a File

Disks and Partitions

USB Stick Backup

# cat /proc/partitions

major minor #blocks name

8 32 2006854 sdc

8 33 2006823 sdc1

# cp /dev/sdc1 /Backups/USB-Stick

# mount -o loop /Backups/USB-Stick /mnt

33 / 359



Demo Sessions Everything is a File

/proc and /sys

Kernel has variables in memory that configure certain aspects of its
operation

Most of these variables are exposed as files

Corefiles should be named core.<PID>

# echo core.%p > /proc/sys/kernel/core_pattern

Suspend to Disk

# echo disk > /sys/power/state

34 / 359



Demo Sessions Everything is a File

Random Numbers

Kernel, respectively drivers, collect entropy from certain kinds of interrupts.

Emptying the Entropy Pool

$ cat /dev/random

35 / 359



Programming Basics

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

36 / 359



Programming Basics Toolchain and Software Build

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

37 / 359



Programming Basics Toolchain and Software Build

Programming Languages C und C++

Files end with .h, .c (C) and .cc or .cpp (C++)

Not executable

Compilation creates .o files

Multiple .o files aggregated into an executable or a shared library
(.so), through linking

Multiple .o files aggregated into static library, through archiving

Compilation with (GNU-)Compiler (gcc, g++).

Linking with ld, better yet with gcc und g++ frontends.

Archiving with ar.

38 / 359



Programming Basics Toolchain and Software Build

Important Options of the GNU C Compiler

-c Just compile, don’t link
-o file Output to file file (default: inputfile.o)
-D macro Preprocessor macro
-D V=1 Preprocessor macro with value
-O2 Optimization level 2
-O0 Optimization off
-g Create debug information
-I directory Append directory to include path
-Wall Activate “almost” all warnings
-pedantic ISO C/C++ pedantry
-Werror Warnings become errors

39 / 359



Programming Basics Toolchain and Software Build

Additional Warnings (Excerpt)

-Wold-style-cast Non-void C style casts (C++)
-Woverloaded-virtual Signature mismatch (C++)
-Wswitch-enum Missing case label
-Wfloat-equal Comparing floating point numbers using ==
-Wshadow A variable shadows another
-Wsign-compare Signed/unsigned comparison
-Wsign-conversion Implicit sign conversion possible

More than one ever wanted to know → info gcc, man gcc

40 / 359



Programming Basics Toolchain and Software Build

Example: C compilers call

Building an object file

$ gcc -c -o hello.o hello.c

41 / 359



Programming Basics Toolchain and Software Build

Archiving (Static Libaries)

Archive ⇔ Static library

Straightforward collection of one or more object files in a single file

Extension .a → libbasename.a

Not dynamically loadable

Linker copies elements into resulting executable

Creating a static library

$ ar cr libhello.a hello1.o hello2.o

42 / 359



Programming Basics Toolchain and Software Build

Linking an Executable

Linker call using gcc or g++, rather than ld directly.
Options:

-o file Output file file (default: a.out)
-g Link with debug information
-s “strip” (remove symbol information)
-L directory Add directory to library search path
-l basename Library basename, along library search path
-static Static linking (don’t use shared libraries)

43 / 359



Programming Basics Toolchain and Software Build

Example: Linking an Executable

Linking, Using Separate Compilation

$ gcc -I../hello -c -o main.o main.c

$ gcc -o the-exe main.o -L../hello -lhello

Linking and Compiling in one Swoop

$ gcc -o the-exe main.c -L../hello -lhello

Library by file

$ gcc -o the-exe main.c ../hello/libhello.a

44 / 359



Programming Basics Toolchain and Software Build

Shared Libraries

Linked Entity, out of one or more object files

“Executable with multiple entry points”

Extension .so → lib<name>.so

Loaded dynamically at program start (no copy at build time)

Ends with .so oder .so.<VERSION>

Difference from Windows DLL: everything exported.

45 / 359



Programming Basics Toolchain and Software Build

Example: Linking a Shared Library

Linking, Using Separate Compilation

$ gcc -fPIC -c -o hello1.o hello1.c

$ gcc -fPIC -c -o hello2.o hello2.c

$ gcc -shared -o libhello.so hello1.o hello2.o

Linking and Compiling in one Swoop

$ gcc -fPIC -shared -o libhello.so hello1.c hello2.c

46 / 359



Programming Basics Toolchain and Software Build

Shared Libraries - Problems

Library missing or not found

Library does not fit (symbols missing)

Library not compatible (program crashes or otherwise misbehaves) →
“ABI” violation

Tricky:

Libraries use other libraries, these again use libraries

C++ adds more easy opportunity for incompatibilities

C++ ABI helps, but does in no way give protection against
home-made bugs (e.g., naive addition of a virtual method)

47 / 359



Programming Basics Toolchain and Software Build

Shared Libraries - Central Libraries

libc.so.6 C language runtime, system calls
libdl.so.2 Dynamic loading of libraries
libpthread.so.0 POSIX threads implementation
libm.so.6 math support
librt.so.1 “Realtime” (e.g. POSIX message queues)
linux-vdso.so.1 Kernel interface (virtual)

48 / 359



Programming Basics Toolchain and Software Build

Shared Libraries - Diagnosis

Which libraries does the shell need, and where are they found?

Bash Dependencies

$ ldd /bin/bash

linux-vdso.so.1 => (0x00007fff5e3ff000)

libncurses.so.5 => /lib/libncurses.so.5 (0x00007f6...

libdl.so.2 => /lib/libdl.so.2 (0x00007f6e1a957000)

libc.so.6 => /lib/libc.so.6 (0x00007f6e1a5fe000)

/lib64/ld-linux-x86-64.so.2 (0x00007f6e1adad000)

49 / 359



Programming Basics Toolchain and Software Build

Shared Libraries — Loader Path

Search path for shared libraries during load time:

1 LD PRELOAD (except SUID/SGID)

2 Compiled-in RPATH

3 LD LIBRARY PATH (except SUID/SGID)

4 /etc/ld.so.conf → /etc/ld.so.cache

5 /usr/lib

6 /lib

50 / 359



Programming Basics Toolchain and Software Build

Libraries — Linker Path

Linker does only one “pass” → Library
order is significant.

Right

$ gcc ... -lhello -lhallo ...

Wrong

$ gcc ... -lhallo -lhello ...

51 / 359



Programming Basics System Calls vs. Library Functions

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

52 / 359



Programming Basics System Calls vs. Library Functions

System Calls

The kernel is not a library → no direct function calls, but rather “System
Calls”.

Entry points into the kernel

Every system call has a unique number and a fixed set of parameters
and registers (ABI)

Changes context from user mode to kernel mode

Implementation is CPU specific (software interrupt ...)

Numbers, parameters, etc. are Linux specific

“Kernel acts on behalf of a process”

→ man syscalls

53 / 359



Programming Basics System Calls vs. Library Functions

System Calls and the C-Library

System calls are never used
directly by a program ...

Syscall Wrapper

#include <unistd.h>

int main() {

write(1, "Hallo\n", 6);

return 0;

}

54 / 359



Programming Basics System Calls vs. Library Functions

Library Function or System Call?

Distinction is not always clear → Manual pages

System calls
(manual section 2)

write()

read()

connect()

...

No system calls
(manual section 3)

malloc()

printf()

getaddrinfo()

...

55 / 359



Programming Basics System Calls vs. Library Functions

Manual Pages

man [section] name.

For example: man man →
1 User Commands

2 System Calls

3 C Library Functions

4 Devices and Special Files

5 File Formats and Conventions

6 Games et. Al.

7 Miscellanea

8 System Administration tools and Daemons

56 / 359



Programming Basics Error Handling

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

57 / 359



Programming Basics Error Handling

The errno Variable

On error, system calls (and most C library functions) return -1 and set the
global variable errno.

Error Handling with System Calls

ssize_t n = read(fd, buffer, sizeof(buffer));

if (n == -1)

if (errno == EINTR)

/* interrupted system call, retry possible */

else

/* abort, reporting the error */

58 / 359



Programming Basics Error Handling

errno is global

Where’s the bug?

Bad Error Handling

ssize_t n = read(fd, buffer, sizeof(buffer));

if (n == -1) {

fprintf(stderr, "Error %d\n", errno);

if (errno == EINTR)

/* ... */

}

59 / 359



Programming Basics Error Handling

Helper Functions

void perror(const char *s) Message to stderr, beginning with
s

char *strerror(int errnum) Modifiable pointer pointer to error
description

char *strerror r(int errnum, char *buf, size t buflen)

Cleanest alternative

Error output

if (n == -1)

perror("read()");

60 / 359



Programming Basics Exercises

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

61 / 359



Programming Basics Exercises

Exercise: Hello World

1 Write a “Hello World” and build it. (Only main() and printf() in a
single file.)

2 Refactoring: divide this program into an executable containing the
main() function, and a library which contains the rest. The library is
then statically linked into the executable.

3 Add this program to out CMake build environment.

62 / 359



File I/O

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

63 / 359



File I/O Basics

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

64 / 359



File I/O Basics

File Descriptors

Universal “Handle” for everything that’s got to do with I/O.

Type: int

“File” is only one shape of I/O

Pipes, Sockets, FIFOs, Terminals, Device Special Files
(→ entry point into arbitrary kernel drivers)

Linux specific ingenuities: signalfd(), timerfd create(),
eventfd()

65 / 359



File I/O Basics

Standard Filedescriptors

Number POSIX Macro stdio.h equivalent

0 STDIN FILENO stdin

1 STDOUT FILENO stdout

2 STDERR FILENO stderr

Interaktive Shell: all three associated with terminal

Standard input and output used for I/O redirection and pipes

Standard error receives errors, warnings, and debug output

=⇒ Windows-Programmers: no errors, warnings, and debug output to
standard output!!

66 / 359



File I/O Basics

File I/O System Calls

open() Opens a file (or creates it → Flags)

read() Reads bytes

write() Writes bytes

close() Closes the file

open() creates file descriptors that are associated with path names (files,
named pipes, device special files, ...). Other “Factory” functions:
connect(), accept(), pipe(), ....

read(), write(), close() valid for sockets, pipes, etc.

67 / 359



File I/O Basics

open()

man 2 open

int open(const char *pathname, int flags, ...);

Swiss army knife among system calls. Multiple actions, governed by
bitwise-or’ed flags:

Create/Open/Truncate/...

Access mode (Read, Write)

Hundreds of others

68 / 359



File I/O Basics

open() Flags

Access Mode

O RDONLY: Write → error

O WRONLY: Read → error

O RDWR: ...

Creating a File

O CREAT: create if not exists

O CREAT|O EXCL: error if exists

Miscellaneous

O APPEND: write access appends at the end

O TRUNC: truncate file to zero length if already exists

O CLOEXEC: exec() closes the file descriptor (→ later)

69 / 359



File I/O Basics

read()

man 2 read

ssize_t read(int fd, void *buf, size_t count);

Return value: number of bytes read (-1 on error)

“0” is “End of File”

Can read less than count (usually with network I/O)

70 / 359



File I/O Basics

write()

man 2 write

ssize_t write(int fd, const void *buf, size_t count);

Return value: number of bytes written (-1 on error)

Can write less than count (usually with network I/O)

Connections (e.g. pipe, socket): connection loss → SIGPIPE (process
termination)

71 / 359



File I/O Basics

File Offset: lseek()

read() and write() manipulate the “offset” (position where the next
operation begins).
Explicit positioning:

man 2 lseek

off_t lseek(int fd, off_t offset, int whence);

Positioning beyond file size, plus write to that position → “holes”,
occupying no space
Read from a hole → null bytes.

72 / 359



File I/O Basics

The Rest: ioctl()

“tunnel” for functionality not declarable as I/O

Most commonly used to communicate with drivers

E.g.: “Open that CD drive!”

man 2 ioctl

int ioctl(int fd, int request, ...);

Mostly deprecated nowadays (though easily implemented in a driver)

Better (because more obvious): use /proc and /sys

73 / 359



File I/O Exercises

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

74 / 359



File I/O Exercises

Exercise: File I/O Basics

1 Write a program that interprets its two arguments as file names, and
copies the first to the second. The first must be an existing file (error
handling!). The second is the target of the copy. No existing file must
be overwritten.

2 Create a file that is 1 GB in size, but occupies only a couple of bytes
physically.

75 / 359



File I/O Duplicating

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

76 / 359



File I/O Duplicating

File Descriptors, Open File, I-Node

File descriptor is a “handle” to
a more complex structure
File (“Open File”)

Offset

Flags

I-Node

Type

Block list

...

77 / 359



File I/O Duplicating

File Descriptors and Inheritance

A call to fork() inherits
file descriptors

→ reference counted copy
of the same “Open File”.

→ Processes share flags
and offset!

File closed (open file
freed) only when last copy
is closed

78 / 359



File I/O Duplicating

Duplicating File Descriptors

man 2 dup

int dup(int oldfd);

Return: new file descriptor

man 2 dup2

int dup2(int oldfd, int newfd);

newfd already open/occupied →
implicit close()

79 / 359



File I/O Duplicating

Example: Shell Stdout-Redirection (1)

Stdout-Redirection

$ /bin/echo Hello > /dev/null

Redirection is a shell
responsibility
(/bin/bash)

echo writes “Hello” to
standard output.

... and does not
want/have to care where
it actually goes

80 / 359



File I/O Duplicating

Example: Shell Stdout-Redirection (2)

Stdout-Redirection

$ strace -f bash -c ’/bin/echo Hallo > /dev/null’

[3722] open("/dev/null", O_WRONLY|O_...) = 3

[3722] dup2(3, 1) = 1

[3722] close(3) = 0

[3722] execve("/bin/echo", ...) = 0

(fork(), exec(), wait() omitted for clarity.)

81 / 359



File I/O Duplicating

Example: Shell Stdout-Redirection (2)

open("/dev/null") dup2(3, 1) close(3)

82 / 359



File I/O Miscellaneous

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

83 / 359



File I/O Miscellaneous

I/O without Offset Manipulation

read() and write() have been made for sequential access.

Random access only together with lseek()

Inefficient

Not atomic → Race Conditions!

man 2 pread

ssize_t pread(int fd, void *buf, size_t count,

off_t offset);

ssize_t pwrite(int fd, const void *buf, size_t count,

off_t offset);

84 / 359



File I/O Miscellaneous

Scatter/Gather I/O

Often data are not present in one contiguous block

E.g. layered protocols

→ Copy pieces together, or issue repeated small system calls

→ Scatter/Gather I/O

man 2 readv

ssize_t readv(int fd,

const struct iovec *iov, int iovcnt);

ssize_t writev(int fd,

const struct iovec *iov, int iovcnt);

85 / 359



File I/O Miscellaneous

Scatter/Gather I/O, without Offset Manipulation

Wortlos ...

man 2 preadv

ssize_t preadv(int fd,

const struct iovec *iov, int iovcnt,

off_t offset);

ssize_t pwritev(int fd,

const struct iovec *iov, int iovcnt,

off_t offset);

Attention: Linux specific

86 / 359



File I/O Miscellaneous

Truncating Files

Truncating a file ...

... or create a hole (∼ lseek())

man 2 truncate

int truncate(const char *path, off_t length);

int ftruncate(int fd, off_t length);

87 / 359



File I/O Miscellaneous

File Descriptors - Allocation

Value of the next file descriptors is not arbitrarily chosen → next free slot,
starting at 0.

Filedescriptor Selection

close(STDIN_FILENO);

int fd = open("/dev/null", O_WRONLY);

assert(fd == 0);

88 / 359



File I/O Exercises

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

89 / 359



File I/O Exercises

Exercises: File I/O, Offset Conflict

Create a file (file descriptor fd1) and open it a second time (file
descriptor fd2). Write bytes abc in both file descriptors. Examine the
file’s content. What’s there and what did you expect?

Modify the program from the previous exercise, and pass the flag
O APPEND to both open() calls. What do you notice?

Instead of creating two independent file descriptors using open(),
create the second from the first using dup(), and see what’s
happening.

90 / 359



File I/O Exercises

Exercise: File I/O, dup(), Offset

See how duplicated file descriptors share one offset. For example,
write on one of them and check the offset on the second. (Hint: read
man 2 lseek() for how to get the offset associated with a file
descriptor.)

91 / 359



File I/O What Has Happened

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

92 / 359



File I/O What Has Happened

What Has Happened

What Has Happened

Fundamental Unix: open(), read(), write(), close()

Semantics of file descriptors

Inheritance across fork()

Duplicating file descriptors

Files can have holes, and other ridiculosities

strace

What’s next?

Processes

93 / 359



Processes

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

94 / 359



Processes Basics

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

95 / 359



Processes Basics

Processes and Programs (1)

A process has the following basic properties:

Independently running unit

Instruction pointer, stack pointer, register, ...

Separate address space

32 bit pointers → 4G addressable memory
Virtual memory
Organized in stack, heap, text, initialized and uninitialized data
Access protection

96 / 359



Processes Basics

Processes and Programs (2)

A programm is a file containing the rules for composing a process’s
address space.

Executable format: ELF (“Executable and Linkable Format”) → man

5 elf

Contains so-called “Sections”

Text: instruction/code
Data: initialized data (C: global variables which are explicitly initialized)
Sections for dynamic linking/loading
C++: constructors and destructors of global objects
... and much more ...

Loader loads a program and configures its address space
→ man 8 ld.so

97 / 359



Processes Process Attributes

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

98 / 359



Processes Process Attributes

Attributes: Overview

Process ID (PID). Unique ID of every process.

Process ID of the process’s parent (PPID).

Program name. The program file the process is running from.

Current working directory (CWD).

Commandline arguments.

Environment variables

“Credentials”. A set of user and group IDsthat define permissions.

99 / 359



Processes Process Attributes

PID, PPID

man 2 getpid

pid_t getpid(void);

pid_t getppid(void);

Every process knows about its parent → tree structure

First process has PID 1 (called “init”)

init has PPID 0 → does not exist (“kernel”)

100 / 359



Processes Process Attributes

Argument Vector

main

$ ls -l /tmp

main

int main(int argc, char** argv)

{

...

}

101 / 359



Processes Process Attributes

Environment (1)

Environment variables

Are copied from parent at process creation → “inherited”

Prominent examples:

HOME, USER. Home directory; set by the login program
DISPLAY. Set by the graphical login manager (if any)

102 / 359



Processes Process Attributes

Environment (2)

man 7 environ

extern char **environ;

char *getenv(

const char *name);

int putenv(char *string);

int setenv(

const char *name,

const char *value,

int overwrite);

int unsetenv(

const char *name);

int clearenv(void);

103 / 359



Processes Life Cycle of Processes

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

104 / 359



Processes Life Cycle of Processes

Life Cycle of Processes

fork() creates a new process

exec() sets up the process address space from
an excutable file (PID remains the same) and
passes control to the code

exit() terminates a process → “Exit Status”

wait() synchronizes the caller with the
termination of a child process

105 / 359



Processes Life Cycle of Processes

Example: Shell Command

$ /bin/echo Hello, seen by shell

$ strace -f bash -c ’/bin/echo Hello’

clone(...) = 14272

[14271] wait4(-1, Process 14271 suspended

<unfinished ...>

[14272] execve("/bin/echo",["/bin/echo", "Hello"],...

[14272] write(1, "Hello\n", 6) = 6

[14272] exit_group(0) = ?

<... wait4 resumed> [,,], 0, NULL) = 14272

106 / 359



Processes Life Cycle of Processes

Create Process: fork()

man 2 fork

pid_t fork(void);

fork() splits the process in two →
two return values.
Important:

1:1 Copy of the address space

→ Child runs from the same
executable

fork() in Action

pid_t process = fork();

if (process == 0) {

/* Child (green) */

}

else if (process > 0) {

/* Parent (blue) */

}

else {

/* Error */

}

107 / 359



Processes Life Cycle of Processes

Execute Program: exec()

Executing a program

Sets up the address space of an existing process

Most work done by userspace → ld.so

File descriptors remain open (→ shell I/O redirection)

... except O CLOEXEC (“Close-on-exec”) file descriptor flag

Signal handlers removed

Memory mappings removed

108 / 359



Processes Life Cycle of Processes

Example: Shell’s exec

Shell exec

$ exec sleep 5

Re-mixes the address space of the running process (the interactive shell)

sleep terminates

Terminal waits until shell terminates (wait())

→ Terminal terminates

109 / 359



Processes Life Cycle of Processes

exec() Variants (1)

Actual system call:

man 2 execve

int execve(

const char *filename,

char *const argv[],

char *const envp[]);

filename is the path to the executable (absolute or relative)

Has nothing to do with argv[0] → can be set to anything

110 / 359



Processes Life Cycle of Processes

exec() Variants (2)

C library wrappers:

man 3 execl

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg,

..., char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

int execvpe(const char *file, char *const argv[],

char *const envp[]);

111 / 359



Processes Life Cycle of Processes

Terminate Process: exit() (1)

Terminate, without any ado like flushing stdio buffers → raw system call

man 2 exit

void _exit(int status);

Attention:

Process is really shot the hard way

atexit() handlers not called

→ (e.g.) stdio buffers are not flushed

112 / 359



Processes Life Cycle of Processes

Terminate Process: exit() (2)

Nicer termination: flushing buffers before termination

man 3 exit

void exit(int status);

int atexit(void (*function)(void));

atexit() registers callbacks

→ in a signal handler only exit() possible

113 / 359



Processes Life Cycle of Processes

Exit Status

Exit status leaves parent an 8 bit number. Arbitrary, but the convention is
...

0 → Ok

!=0 → Error

Exit Status and the Shell

$ if echo Hello > /dev/null; then

> echo $? is Ok

> fi

0 is Ok

114 / 359



Processes Life Cycle of Processes

Child Surveillance: wait()

wait() yields information about a child process’s
status change

Voluntary termination (by calling exit())

Involuntary termination (by an unexpected
signal)

Stopped (e.g. Ctrl-Z through terminal →
SIGSTOP)

Continued (z.B. fg from the shell → SIGCONT)

115 / 359



Processes Life Cycle of Processes

wait()

Simplest form:

man 2 wait

pid_t wait(int *status);

Waits until a child terminates

Yields its PID as return value

Sets status

Caller has no child process altogether → Error

116 / 359



Processes Life Cycle of Processes

waitpid()

man 2 waitpid

pid_t waitpid(pid_t pid, int *status, int options);

pid specifies which child to wait for

pid > 0: wait for child with pid

pid == -1: wait for any child

pid == 0 oder pid < -1: process group

options (0 → “no particular special wishes”)

WUNTRACED: “stopped” is reported (default: no report)

WCONTINUED: “continued” is reported (default: no report)

WNOHANG: don’t block; no dead child → return value 0

117 / 359



Processes Life Cycle of Processes

Exit Status According to wait()

Exit status: an integer carries much information

W* Macros in Action

int status;

pid = waitpid(-1, &status, WUNTRACED|WCONTINUED);

if (WIFEXITED(status))

printf("Exited: %d\n", WEXITSTATUS(status));

else if (WIFSIGNALED(status))

printf("Signal: %d (%s)\n", WTERMSIG(status),

WCOREDUMP(status)?"core":"no core");

else if (WIFSTOPPED(status))

printf("Stopped: %d\n", WSTOPSIG(status));

else if (WIFCONTINUED(status))

printf("Continued\n");

→ man 2 wait

118 / 359



Processes Life Cycle of Processes

Orphans and Zombies

Zombie:

Process that does not exist anymore (→ cannot be killed)

Exit status has not been fetched by parent → a program that calls
fork() should not forget to wait().

Status in e.g. ps output: “defunct”

Its only sign of existence is an entry in the kernel process table

Orphan:

Parent terminates → children become “orphans”

Kernel assigns them PID 1 (init) as parent (orphanage)

119 / 359



Processes Exercise: Processes

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

120 / 359



Processes Exercise: Processes

Exercise: Process Life Cycle

Write a program that ...

Executes a program

Synchronizes with its termination

Prints all diagnostics it can get — don’t forget about “stopped” and
“continued”

Example call: starter ls -l /tmp

121 / 359



Processes Signals

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

122 / 359



Processes Signals

Overview

Signals are poor notifications to a process

Number between 1 and 31

Sent from a process to another process (→ permissions)

Hardware exception. E.g. floatingpoint, memory access ...

Special terminal events: Ctrl-C (SIGINT), Ctrl-Z (suspend,
SIGTSTP) ...

Software events: timer runs off (SIGALRM) ...

123 / 359



Processes Signals

Terminology

Generate. A signal is sent.

Deliver. The signal is received by a process (“delivered by the
kernel”). The signal handler (→ later) is run.

Pending. A signal is pending on a process until it is delivered.

Blocked. A process refuses to get a signal delivered (he “blocks” the
signal).

Signal Mask. The set of signals that are blocked by a process.

124 / 359



Processes Signals

Default Actions

All signals have a predefined “default action”

The signal is ignored. E.g. SIGCHLD.

Process termination. “Abnormal Process Termination”, as opposed to
exit(). With or without core dump.

The process is stopped or continued.

125 / 359



Processes Signals

Important Signals

→ man 7 signal

→ kill -l

Signal Default Action Reason

SIGABRT Terminate (core dump) E.g. assert()

SIGSEGV Terminate (core dump) Access violation
SIGBUS Terminate (core dump) Access violation
SIGILL Terminate (core dump) Bogus function pointer
SIGFPE Terminate (core dump) Floating point
SIGINT Terminate Ctrl-C

SIGTERM Terminate Explicit kill
SIGPIPE Terminate Write to pipe/socket
SIGCHLD Ignore Child death

126 / 359



Processes Signals

Sending Signals

man 2 kill

int kill(pid_t pid, int sig);

pid specifies where the signal goes to

pid > 0: process

pid == -1: Broadcast; every process the sender has permissions to.
Except init and the sender itself.

pid == 0 or pid < -1: process group

127 / 359



Processes Signals

Warning!

Warning!

Signals are no toy

Signals are no communication medium

Signal handlers are executing in a context that has nothing to do with
normal program context → asynchronous

One does not install a signal handler for e.g. SIGSEGV

One does not ignore SIGSEGV

One does not block SIGSEGV

...

128 / 359



Processes Signals

Signal Set: sigset t

Signal Set: eine set of signals. Signals are numbered 1 through 31 → int

resp. sigset t.

man 3 sigsetops

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signum);

int sigdelset(sigset_t *set, int signum);

int sigismember(const sigset_t *set, int signum);

129 / 359



Processes Signals

The Signal Mask (1)

Signal Mask:

Process attribute (more exactly: thread)

Specifies which signals are blocked

Signal that have been sent to a process but which he blocks remain
pending

Pending signals:

Get delivered as soon as they are unblocked

Signals of the same type don’t pile up at the receiver → two SIGINT
are only delivered once

130 / 359



Processes Signals

The Signal Mask (2)

Setting/modifying the signal mask:

man 2 sigprocmask

int sigprocmask(int how,

const sigset_t *set, sigset_t *oldset);

Pending Signals:

man 2 sigpending

int sigpending(sigset_t *set);

131 / 359



Processes Signals

Signal Handlers

To change the “default action” of a signal one installs a signal handler —
Pointer to a function with the following signature:

Signal Handler

void handler(int sig);

132 / 359



Processes Signals

Installing a Signal Handler

man 2 sigaction

struct sigaction {

void (*sa_handler)(int);

sigset_t sa_mask;

int sa_flags;

};

int sigaction(int signum,

const struct sigaction *act,

struct sigaction *oldact);

Special sa handler values:

SIG IGN: ignore the signal

SIG DFL: restore default action

133 / 359



Processes Signals

Effects of Signal Delivery

E.g. terminate a program based upon the value of a flag (by dropping out
of a loop) that is set in a signal handler. Use ...

sig atomic t

volatile sig_atomic_t flag;

Blocking system calls (e.g. read() or write()) return an error when
they have been interrupted by a signal

errno is EINTR

134 / 359



Processes Signals

Last Warning!

Signals are delivered asynchronously

In a signal handler, only async-signal-safe functions can be used

→ practically only system calls

→ man 7 signal

The following functions (among many others) are not async-signal-safe:

printf(), sprintf() (everything from stdio.h and iostream,
respectively)

malloc(), free() etc.

exit() ( exit() can be used)

Everything from pthread.h

135 / 359



Processes Exercise: Signals

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

136 / 359



Processes Exercise: Signals

Exercise: Signals

Write a program that ...

... reads from STDIN FILENO in a loop, and outputs what was read to
STDOUT FILENO. Imagine that this is a replacement for an immensely
important work which can block — the program blocks on
STDIN FILENO.

On program termination, the program has to do important cleanup
work — it has to catch at least SIGINT and SIGTERM.

Our cleanup work is to safely — not in the signal handler — write
“Goodbye!” to standard output.

137 / 359



File System

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

138 / 359



File System Owner, Permissions

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

139 / 359



File System Owner, Permissions

Owner and Permissions

Types of permissions

Read (r)

Write (w)

Execute (x)

Separate permissions for

User (u)

Group (g)

Others (o)

140 / 359



File System Owner, Permissions

Permission Bits

File Permissions

$ ls -l /etc/passwd

-rw-r--r-- ... /etc/passwd

Bits Meaning

- Type: regular file
rw- Read- and writable for owner (root)
r-- Readable for group
r-- Readable for others

141 / 359



File System Owner, Permissions

Execute Permissions

Execute Permissions

$ ls -l /bin/ls

-rwxr-xr-x ... /bin/ls

Facts ...

An executable file does not have to end with .exe to be executable

... it simply is executable

142 / 359



File System Owner, Permissions

Directory Permissions

Directory Permissions

$ ls -ld /etc

drwxr-xr-x ... 07:54 /etc

Read permissions: content (list of names) is readable

Execute permissions: to access a file (e.g. for reading), one has to
have execute permissions on the parent directory and all directories
along the path

The right to chdir into the directory

143 / 359



File System Owner, Permissions

Permission Bits, octal

ls -l Output Binary Shell command

-rw-r--r-- 110100100 chmod 0644 ...

-rw------- 110000000 chmod 0600 ...

-rwxr-xr-x 111101101 chmod 0755 ...

System calls take an integer argument → mostly given octal

144 / 359



File System Owner, Permissions

Default Permissions – umask

The U-Mask ...

Bit field

Subtracted from default permissions at file/directory creation

Process attribute → inherited

umask in Action

$ umask

0022

$ touch /tmp/file

$ ls -l /tmp/file

-rw-r--r-- ... /tmp/file

145 / 359



File System Owner, Permissions

umask: How Does it Work?

umask subtracted from default permissions

umask is an (inherited) process attribute

Default permissions at file creation: rw-rw-rw-

Default permissions rw-rw-rw- 110 110 110 0666
- U-Mask ----w--w- 000 010 010 0022

Outcome rw-r--r-- 110 100 100 0644

146 / 359



File System Owner, Permissions

Shell Commands

Permission modification (set to octal value):
$ chmod 755 ~/bin/script.sh

Permission modification (differential symbolic):
chmod u+x,g-wx,o-rwx ~/bin/script.sh

Group ownership modification (only root and members of the group
can do this):
chgrp audio /tmp/file

Ownership modification (only root):
chown user /tmp/file

chmod, chown, and chgrp understand -R for ”recursive”.

147 / 359



File System Owner, Permissions

Set-UID Bit

Set-UID Bit: motivation

Ugly hack!

Encrypted passwords in /etc/passwd or /etc/shadow

Only root can modify

I (jfasch) want to change my password

Have to become root

... but cannot

passwd

$ ls -l /bin/passwd

-rws--x--x 1 root root ... /bin/passwd

148 / 359



File System Owner, Permissions

Sticky Bit

Sticky bit: motivation

Ugly hack!

Everyone has write permissions in /tmp

=⇒ everyone can create files
=⇒ everyone can remove files

Chaos: everyone can remove each other’s files

Sticky Bit in /tmp

$ ls -ld /tmp

drwxrwxrwt ... /tmp

149 / 359



File System Owner, Permissions

Owner and Permissions: System Calls

man 2 chown

int chown(const char *path, uid_t owner, gid_t group);

int fchown(int fd, uid_t owner, gid_t group);

int lchown(const char *path, uid_t owner, gid_t group);

man 2 chmod

int chmod(const char *path, mode_t mode);

int fchmod(int fd, mode_t mode);

150 / 359



File System Directories and Links

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

151 / 359



File System Directories and Links

Directories and Links

Directory: file containing pairs (name,inodenummer)

Hardlink: directory entry that points to the same i-node as another
entry

→ the two are indistinguishable

Symbolic (soft-, sym-) link: file containing the name of another file

Closest to what’s called a “shortcut” in Doze (however that’s
implemented there)

152 / 359



File System Directories and Links

Directory

Directory

Internally organized as a file

Except that read() and write() are
not possible

Operations:

opendir(), readdir(),

closedir()

mkdir()

rmdir(): remove entry that points to
empty directory
unlink(): remove an entry that
points to a non-directory

153 / 359



File System Directories and Links

Hard Link

Hard Link

link()

Circular hard links
possible → can only
point to non-directories

Only within the same file
system

154 / 359



File System Directories and Links

Soft Link

Soft Link

“Symbolic link”, “Symlink”

open()/opendir() on a symlink → “de-reference”

Operates on the pointed-to entry

Link creation: symlink()

Determine the link’s target: readlink()

Target need not exist → “Dangling Link”

155 / 359



File System Directories and Links

unlink() Semantics

One can remove entries that other processes have open

File descriptors refer to the pointed-to I-node

Only the directory entry is removed → file becomes invisible

I-node (and associated data) remain on-disk

I-node is freed only when last referring file descriptor is closed

156 / 359



POSIX Threads

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

157 / 359



POSIX Threads Basics

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

158 / 359



POSIX Threads Basics

Why Threads?

fork() is so beautiful

New process

New address space

→ no race conditions

→ simple is beautiful!

But ...

Process creation is expensive

Separate address space → communication is cumbersome

Portability: Windows has no idea

159 / 359



POSIX Threads Basics

Typical Uses

Use of multiple processors for compute-intensive calculation

One is force to use a library that blocks

A no-go in a GUI application for example
Push it in a thread, call it there, and communicate with the thread
however you feel best
Communication → later

Blocking I/O

Like the blocking library: push it in a dedicated thread
But there are better anti-naive solutions (Unix is not Windows)

160 / 359



POSIX Threads Basics

Overview

Creating threads

Synchronisation: Mutex

Communication: Condition variable

Thread specific data (a.k.a. thread local storage)

One-time initialization

161 / 359



POSIX Threads Basics

Legal (1)

Threads of one process share the following resources:

Process memory

PID and PPID

Credentials

Open files

Signal handler

Umask, Current Working Directory, etc.

...

162 / 359



POSIX Threads Basics

Legal (2)

Threads have the following attributes of their own:

Thread ID (TID)

Scheduler only cares about threads
A process is just a container (which happens to have the ID of the
main thread)

Stack

errno

Signal mask

Thread specific data (TSD)

...

163 / 359



POSIX Threads Basics

POSIX Thread API

POSIX thread API is not implemented in the kernel

User space library
man 3 ...

strace is of limited use

errno is thread spezific → “semi-global”

No PThread function sets errno

They generally return what otherwise would be -errno

Thank you!

gcc -pthread

Defines macro REENTRANT

Links -lpthread

C++: thread safe initialization of local static

164 / 359



POSIX Threads Thread Life Cycle

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

165 / 359



POSIX Threads Thread Life Cycle

Thread Life Cycle

pthread create() creates new thread

Start function is called

Thread terminates

pthread join() synchronizes with
termination (fetches “exit status”)

No parent/child relationship → anybody can
join

166 / 359



POSIX Threads Thread Life Cycle

Thread Creation

man 3 pthread create

int pthread_create(

pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg);

thread: ID of the new thread (“output” parameter)

attr → see later (NULL → default attribute)

start routine: thread start function, void*/void*

arg: parameter of the start function

167 / 359



POSIX Threads Thread Life Cycle

Thread Termination (1)

Thread termination alternatives:

Return from start function

pthread exit() from somewhere inside the thread (cf. exit() from
a process)

pthread cancel() from outside (cf. kill())

exit() of the entire process → all contained threads are terminated

Don’t use pthread cancel() unless you know what you are doing!

168 / 359



POSIX Threads Thread Life Cycle

Thread Termination (2)

Without any further ado: the manual ...

man 3 pthread exit

void pthread_exit(void *retval);

man 3 pthread cancel

int pthread_cancel(pthread_t thread);

169 / 359



POSIX Threads Thread Life Cycle

Exit Status, pthread join()

A thread’s “exit status”:

void*, just like the start parameter → more flexible than a process’s
int.

Parameter to pthread exit()

Return type of the start function

man 3 pthread join

int pthread_join(pthread_t thread, void **retval);

170 / 359



POSIX Threads Thread Life Cycle

Detached Threads

Sometimes one does not want to use pthread join()

Rather, run a thread in the “background”.

“Detached” thread

Thread attribute

man 3 pthread attr setdetachstate

int pthread_attr_setdetachstate(

pthread_attr_t *attr, int detachstate);

PTHREAD_CREATE_DETACHED

Threads that are created using attr will be created in a

detached state.

Detaching at runtime ...

man 3 pthread detach

int pthread_detach(pthread_t thread);

171 / 359



POSIX Threads Thread Life Cycle

Thread ID

pthread create() returns pthread t to the caller

Thread ID of calling thread: pthread self()

Compare using pthread equal()

man 3 pthread self

pthread_t pthread_self(void);

man 3 pthread equal

int pthread_equal(pthread_t t1, pthread_t t2);

172 / 359



POSIX Threads Thread Life Cycle

“Scheduled Entities” (1)

Kernel maintains “scheduled entities” (Process IDs, “1:1” scheduling)

Threads inside firefox

$ ps -eLf|grep firefox

$ ls -1 /proc/30650/task/

13960

13961

... (many more) ...

173 / 359



POSIX Threads Thread Life Cycle

“Scheduled Entities” (2)

Too bad:

Scheduled entity’s ID is not the same as pthread t

Correlation of OS threads and POSIX thread is Linux specific

man 2 gettid

pid_t gettid(void);

174 / 359



POSIX Threads Exercises: Thread Creation, Race Condition

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

175 / 359



POSIX Threads Exercises: Thread Creation, Race Condition

Exercises: Thread Creation, Race Condition

Write a program that creates two threads. Each one of the threads
increments the same integer, say, 10000000 times.

The integer is shared between both threads (allocated in the main()

function). A pointer to it gets passed to the thread start function.
The threads don’t increment a copy of the integer, but rather access
the same memory location.

After the starting process (the main thread) has synchronized with
the incrementer’s termination, he outputs the current value of the
said integer.
What do you notice?

176 / 359



POSIX Threads Synchronization

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

177 / 359



POSIX Threads Synchronization

Race Conditions (1)

Suppose inc() is executed by at
least two threads in parallel:

Very bad code

static int global;

void inc()

{

global++;

}

CPU A CPU B

Instr Reg Instr Reg Mem

load 42 load 42 42
inc 43 inc 43 42

43 store 43 43
store 43 43 43

The variable global has
seen only one increment!!

“Load/Modify/Store
Conflict”

The most basic race
condition

178 / 359



POSIX Threads Synchronization

Race Conditions (2)

Imagine more complex data structures (linked lists, trees): if
incrementing a dumb integer bears a race condition, then what can we
expect in a multithreaded world?

No single data structure of C++’s Standard Template Library is
thread safe

std::string’s copy construktor and assignment operator are thread
safe (GCC’s Standard C++ Library → not by standard)

std::string’s other methods are not thread safe

stdio and iostream are thread safe (by standard since C++11)

179 / 359



POSIX Threads Synchronization

Mutex (1)

man 3 pthread mutex init

int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Dynamic initialization using
pthread mutex init()/pthread mutex destroy()

attr == NULL → default mutex (→ later)

Static initialization using PTHREAD MUTEX INITIALIZER

180 / 359



POSIX Threads Synchronization

Mutex (2)

man 3 pthread mutex lock

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Simple lock/unlock must be enough

If you find yourself using “trylock”, then something’s wrong

Polling is never right!

181 / 359



POSIX Threads Synchronization

Mutex (3)

Better code

static pthread_mutex_t global_mutex =

PTHREAD_MUTEX_INITIALIZER;

static int global;

void inc()

{

/* error handling omitted */

pthread_mutex_lock(&global_mutex);

global++;

pthread_mutex_unlock(&global_mutex);

}

182 / 359



POSIX Threads Synchronization

Mutex Types

man 3 pthread mutexattr settype

int pthread_mutexattr_settype(

pthread_mutexattr_t *attr, int type);

PTHREAD MUTEX NORMAL: no checks, no nothing. Same thread locks
mutex twice in a row before unlock → Deadlock.

PTHREAD MUTEX ERRORCHECK: Deadlock check; unlocking a mutex
locked by another thread → Error

PTHREAD MUTEX RECURSIVE: owner can lock same mutex twice

PTHREAD MUTEX DEFAULT → PTHREAD MUTEX NORMAL

183 / 359



POSIX Threads Synchronization

Atomic Instructions

Simple integers don’t need a mutex

fetch and add()

static int global;

void inc()

{

__sync_fetch_and_add(&global, 1);

}

More → info gcc, GCC manual

184 / 359



POSIX Threads Exercises: Mutex

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

185 / 359



POSIX Threads Exercises: Mutex

Exercises: Fixing the Race Condition

Use a mutex to protect the integer increment in the last exercise.
What do you notice?

Replace the mutex and the increment with a suitable atomic
instruction ( sync fetch and add()). What do you notice?

186 / 359



POSIX Threads Communication

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

187 / 359



POSIX Threads Communication

Condition Variable (1)

Communication:

One thread waits for a certain event to happen

The event is produced by another thread

The waiting thread does not consume and CPU time while waiting
(polling is dumb)

Solution in Windows: WIN32 Events (auto-reset, manual-reset)

POSIX is different: Condition Variablen

No state (as opposed to WIN32 Events — set/unset)

Operations wait() and signal()

Useless on its own

Building block to build custom communication mechanisms around
custom conditions

188 / 359



POSIX Threads Communication

Condition Variable (2)

Sample conditions (predicates, in POSIX parlance):

Event has been set

Message queue is not empty anymore

Message queue is not full anymore

Semaphore count is not zero anymore

...

Condition is coupled with a state which is protected by a mutex. For
example:

Boolean flag “set/unset”

Message queue implementation (linked list?)

189 / 359



POSIX Threads Communication

Condition Variable: wait()

man 3 pthread cond wait

int pthread_cond_wait(

pthread_cond_t *cond,

pthread_mutex_t *mutex);

In an atomic (otherwise → “Lost Wakeup”) operation

Releases mutex

Suspends caller until condition variable is signaled by another thread

190 / 359



POSIX Threads Communication

Condition Variable: signal()

man 3 pthread cond signal

int pthread_cond_signal(pthread_cond_t *cond);

Again, in an atomic operation:

Wakes one waiter if any

Lets him acquire the mutex

191 / 359



POSIX Threads Communication

Example: WIN32 Auto Reset Event (1)

Setting the event

void set_autoreset_event(Event* ev)

{

pthread_mutex_lock(&ev->mutex);

ev->value = 1;

pthread_mutex_unlock(&ev->mutex);

pthread_cond_signal(&ev->is_set);

}

192 / 359



POSIX Threads Communication

Example: WIN32 Auto Reset Event (2)

Waiting for the event

void wait_autoreset_event(Event* ev)

{

pthread_mutex_lock(&ev->mutex);

while (ev->value != 1) {

pthread_cond_wait(&ev->is_set, &ev->mutex);

/* mutex acquiriert */

}

ev->value = 0; /* "autoreset" */

pthread_mutex_unlock(&ev->mutex);

}

193 / 359



POSIX Threads Communication

Condition Variable: Checking the Predicate

Use while instead of if, because ...

Spurious wakeups are possible (for example if the PThread
implementation is using signals internally)

Multiple waiters are woken (broadcast)

Predicate is true, but the first thread invalidates it immediately

194 / 359



POSIX Threads Communication

Condition Variable: Initialization

man 3 pthread cond init

int pthread_cond_destroy(pthread_cond_t *cond);

int pthread_cond_init(pthread_cond_t *cond,

const pthread_condattr_t *attr);

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Dynamic initialization using
pthread cond init()/pthread cond destroy()

attr == NULL → default condition variable

Static initialization using PTHREAD COND INITIALIZER

195 / 359



POSIX Threads Communication

Condition Variable: Miscellaneous

man 3 pthread cond broadcast

int pthread_cond_broadcast(pthread_cond_t *cond);

man 3 pthread cond timedwait

int pthread_cond_timedwait(

pthread_cond_t *cond,

pthread_mutex_t *mutex,

const struct timespec *abstime);

196 / 359



POSIX Threads Exercises: Condition Variable

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

197 / 359



POSIX Threads Exercises: Condition Variable

Exercises: Message Queue (1)

Write a program that ...

... starts a consumer thread. The consumer reads data from the
queue, and writes it to Standard Output. The consumer thread
should terminate by receiving a special token over the queue.

... starts a producer thread. The producer read data from Standard
Input, line by line. Each line is sent to the consumer over the queue.

When the producer see end of file on Standard Input, he inserts a
quit token into the queue and terminates.

The main thread joins with both threads, and terminates once both
are done.

198 / 359



POSIX Threads Exercises: Condition Variable

Exercises: Message Queue (2)

Write a program that ...

... starts a consumer thread. The consumer reads data from the
queue, and writes it to Standard Output. The consumer thread
should terminate by receiving a special token over the queue.

... starts a producer thread. The producer read data from Standard
Input, line by line. Each line is sent to the consumer over the queue.

When the producer see end of file on Standard Input, he inserts a
quit token into the queue and terminates.

The main thread joins with both threads, and terminates once both
are done.

199 / 359



POSIX Threads Miscellaneous

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

200 / 359



POSIX Threads Miscellaneous

One-Time Initialization (1)

Where’s the bug?

Bad code

static X *global;

void use_global()

{

if (global == NULL)

global = new X;

// ... use global ...

}

201 / 359



POSIX Threads Miscellaneous

One-Time Initialization (2)

Good code

static pthread_once_t global_once = PTHREAD_ONCE_INIT;

static X *global;

static void init_global() { global = new X; }

void use_global()

{

pthread_once(&global_once, init_global);

// ... use global ...

}

202 / 359



POSIX Threads Miscellaneous

One-Time Initialization (3)

man 3 pthread once

int pthread_once(pthread_once_t *once_control,

void (*init_routine)(void));

pthread_once_t once_control = PTHREAD_ONCE_INIT;

203 / 359



POSIX Threads Miscellaneous

Thread Specific Data, Thread Local Storage

POSIX thread API for “Thread Specific Data” – per thread global
variables → man 3 pthread key create (including example).
Non-portable alternative:

thread Keyword

static __thread X* global;

204 / 359



POSIX Threads Last Warning

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

205 / 359



POSIX Threads Last Warning

Last Warning

Multithreading does not go together well with fork()

fork() copies the address space → locked mutexes

fork() leaves only the calling thread alive in the child

All others are gone

If you have to use pthread atfork() you’re lost

exec() is ok — everything’s gone anyway.

But why the hell would one do this?

Signals are not ok at all

206 / 359



POSIX Threads Last Warning

Last Warning

Multithreading is dangerous!

It is sexy

It is easy — a thread is created in no time (gosh: C++11)

There are race conditions everywhere

Keep hands off cancellation

Careful when sharing data structures → global variables aren’t bad for
no reason

Debugging is nearly impossible

207 / 359



POSIX Threads Last Warning

Last Warnung

man pthreads: legalese that deserves reading

“Thread-safe functions”: please please read!

“Async-cancel-safe functions” → don’t use cancellation

208 / 359



Scheduling and Realtime

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

209 / 359



Scheduling and Realtime Basics

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

210 / 359



Scheduling and Realtime Basics

Scheduling

Scheduler ...

Assigns processes/threads to processors

Decides for how long they will run

”Fair” Scheduling : Unix tradition from the beginning

Timeslices: everyone gets their share
Inexact tuning opportunity: “nice” value

Realtime scheduling : inherently unfair

211 / 359



Scheduling and Realtime Basics

Nice Values

Nice Value ...

Specifies how “nice” a process is

Between -20 (not nice) and +20 (very nice)

+20 → only runs when noone else wants the CPU

Non-root user can only increase nice value (“become nicer”)

→ man 1 nice, man 2 nice, man 1 renice, man 2 setpriority

212 / 359



Scheduling and Realtime Realtime

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

213 / 359



Scheduling and Realtime Realtime

Realtime Scheduling

Realtime is not fair

One process in an infinite loop can bring the system to halt

Not possible in a fair world
... even when being -20 nice

→ Only root

214 / 359



Scheduling and Realtime Realtime

Scheduling Policies

Scheduling policies determine the scheduler’s way of assigning CPUs ...

SCHED OTHER: the fair world

SCHED FIFO

Process get CPU immediately assigned
Remains on CPU until he relinquishes
... or a higher prio process wants CPU

SCHED RR (Round Robin)

Like SCHED FIFO

Equal prio processes: short timeslices in round robin order

Scheduling priorities

0 ... Reserved for good old fair processes (SCHED OTHER)

1-99 ... Realtime priorities.

215 / 359



Scheduling and Realtime Realtime

Scheduling: Examples

Do nothing high-prio, FIFO policy:

chrt in Action

chrt -f 42 sleep 7

Modify scheduling attributes of existing process 4697:

chrt in Action

chrt -p -f 42 4697

216 / 359



Scheduling and Realtime Realtime

Scheduling: System Calls

Manipulating scheduling attributes of a process:

man 2 sched setscheduler

int sched_setscheduler(

pid_t pid, int policy,

const struct sched_param *param);

int sched_getscheduler(pid_t pid);

struct sched_param {

int sched_priority;

};

217 / 359



Scheduling and Realtime Realtime

Scheduling: Threads (1)

Manipulating scheduling attributes of an existing thread:

man 3 pthread setschedparam

pthread_setschedparam(

pthread_t thread, int policy,

const struct sched_param *param);

pthread_getschedparam(

pthread_t thread, int *policy,

struct sched_param *param);

};

218 / 359



Scheduling and Realtime Realtime

Scheduling: Threads (2)

Start a new thread with predefinied scheduling attributes:

man 3 pthread attr setschedparam

int pthread_attr_setschedparam(

pthread_attr_t *attr,

const struct sched_param *param);

man 3 pthread attr setschedpolicy

int pthread_attr_setschedpolicy(

pthread_attr_t *attr, int policy);

219 / 359



Scheduling and Realtime Priority Inversion

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

220 / 359



Scheduling and Realtime Priority Inversion

Priority Inversion

221 / 359



Scheduling and Realtime Priority Inversion

Priority Inversion: Mutex Protocols (1)

Solution, in spoken words: at the time that C wants the mutex, A has
to carry on → “protocol” between both, communicated via the mutex
→ Mutex Attribute

man 3 pthread mutexattr setprotocol

int pthread_mutexattr_setprotocol(

pthread_mutexattr_t *attr,

int protocol);

222 / 359



Scheduling and Realtime Priority Inversion

Priority Inversion: Mutex Protocols (2)

Mutex Protocols

PTHREAD PRIO INHERIT: A’s priority is temporarily (until mutex is
acquired) boosted to B’s

PTHREAD PRIO PROTECT: A’s priority is temporarily risen to a fixed
limit (→ man 3 pthread mutexattr setprioceiling())

223 / 359



Sockets

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

224 / 359



Sockets Basics

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

225 / 359



Sockets Basics

Sockets

First of all: a socket is a file

Communication mechanism

On the same machine or between different machines

Different types: stream and datagram

Different families: the “Internet” socket family is only one in many

226 / 359



Sockets Basics

Sockets: “Stream”

Stream-Sockets

Connection between two
endpoints (sockets)

Reliable: bytes are delivered, or
an error occurs

No record boundaries (stream of
bytes)

Bi-directional

227 / 359



Sockets Basics

Sockets: “Datagram”

Datagram sockets

Datagrams → record boundaries

Unreliable → datagrams can be
lost or duplicated

No connection → a socket can
send datagrams to multiple
receiver sockets

228 / 359



Sockets Basics

Sockets: Adress Families

The Internet is not the only medium that can be communicated over →
“Adress Families”

Internet IPv4 (AF INET)

Internet IPv6 (AF INET6)

Local (AF UNIX)

Bluetooth (AF BLUETOOTH)

Novell (AF IPX)

Appletalk (AF APPLETALK)

...

229 / 359



Sockets Basics

Sockets: socket() (1)

Design principle:

All socket system calls are independent of type and address family

socket() ist eine generic “factory” → file descriptor

man 2 socket

int socket(int domain, int type, int protocol);

domain: adress family (AF INET, AF INET6, AF UNIX,
AF BLUETOOTH, ...)

type: SOCK STREAM, SOCK DGRAM

230 / 359



Sockets Basics

Sockets: socket() (2)

protocol: if there are no alternatives, protocol is left 0

SOCK STREAM SOCK DGRAM

AF INET TCP UDP

AF INET6 TCP UDP

AF UNIX - -

AF BLUETOOTH L2CAP, HCI, BNEP RFCOMM

231 / 359



Sockets Basics

Sockets: Connection Establishment

1 Server is ready

2 Client establishes connection

3 Server accepts connection

4 Connection is ready

232 / 359



Sockets Basics

Sockets: Adresses

Object oriented (well ...)

sockaddr ist “Base Class” with a type field

233 / 359



Sockets Basics

Sockets: Server is Ready (1)

Server is ready

1 Allocates socket (socket())

2 Binds it to an address (bind())

3 Activates it to accept incoming connections (listen())

man 2 bind

int bind(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

234 / 359



Sockets Basics

Sockets: Server is Ready (2)

man 2 listen

int listen(int sockfd, int backlog);

backlog: maximum number of yet unaccepted connections
(SOMAXCONN)

235 / 359



Sockets Basics

Sockets: Client Establishes Connection

Client establishes connection

1 Allocates socket (socket())

2 Connects it to a server that is bound to an address (connect())

man 2 connect

int connect(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

236 / 359



Sockets Basics

Sockets: Server Design

A server usually accepts multiple connections. Design issues:

Iterative. accept(), followed by request treatment (read(),
write()), and finally close()

Parallel. Several possiblities:

fork(). Parent closes the accepted file descriptor, and the accept()s
the next connection
Multithreaded. Just like fork(), but without close().
Event driven → later.

237 / 359



Sockets Basics

Sockets: Adresses

The key are the addresses ...

We didn’t talk about concrete address schemes

Just roles: client and server, and who uses which system calls

bind(), connect() and accept() receive anonymous sockaddr

This is intentional!

238 / 359



Sockets TCP/IP Sockets

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

239 / 359



Sockets TCP/IP Sockets

The Internet

The Internet (TCP/IP)

Connects networks, which in turn connect computers

Routing protocols

Hardware independent addresses

“Old” version IPv4

“New” version IPv6 (just nobody believes)

Domain Name System (DNS)

240 / 359



Sockets TCP/IP Sockets

TCP/IP: Addresses and Ports

IP-Addresses identify machines (one machine can have multiple
addresses)

IPv4 addresses: 32 bit addresses, like 192.168.1.10

IPv6 addresses: 128 bit addresses, like
2001:0db8:85a3:08d3:1319:8a2e:0370:7344

Port identifies a communicating application.

16 bit integer

241 / 359



Sockets TCP/IP Sockets

TCP/IP: Network Byte Order (1)

Different architectures have different “byte order”

“Big Endian”: MSB at lowest memory address

“Little Endian”: LSB at lowest memory address

IP addresses and port numbers are part of the protocol

Network byte order : big endian

All numbers that belong to addresses (port numbers!), have to be
transformed into network byte order before putting them into address
structures!

242 / 359



Sockets TCP/IP Sockets

TCP/IP: Network Byte Order (2)

Conversion macros: host byte order to network byte order (hton*) and
back (ntoh*)

man 3 byteorder

uint32_t htonl(uint32_t hostlong);

uint16_t htons(uint16_t hostshort);

uint32_t ntohl(uint32_t netlong);

uint16_t ntohs(uint16_t netshort);

243 / 359



Sockets TCP/IP Sockets

TCP/IP: Addresses (IPv4)

man 7 ip

struct in_addr {

uint32_t s_addr;

};

struct sockaddr_in {

sa_family_t sin_family;

in_port_t sin_port; /* net bo. */

struct in_addr sin_addr;

};

244 / 359



Sockets TCP/IP Sockets

TCP/IP: Addresses (IPv6)

man 7 ipv6

struct in6_addr {

unsigned char s6_addr[16];

};

struct sockaddr_in6 {

sa_family_t sin6_family;

in_port_t sin6_port; /* net bo. */

uint32_t sin6_flowinfo;

struct in6_addr sin6_addr;

uint32_t sin6_scope_id;

};

245 / 359



Sockets TCP/IP Sockets

TCP/IP: Addresses/Constants

Before use, initialize addresses: memset(.,0,.)!
The following constants and macros make life easier:

INADDR ANY: IPv4 address 0.0.0.0, “wildcard” address → server
accepts connection from all its network interfaces

IN6ADDR ANY INIT: IPv6 counterpart of INADDR ANY (C-User:
in6addr any)

INET ADDRSTRLEN: maximal length of an IPv4 dotted-decimal address
string

INET6 ADDRSTRLEN: IPv6 counterpart of INET ADDRSTRLEN

246 / 359



Sockets TCP/IP Sockets

TCP/IP: Address Strings

String to sockaddr in or sockaddr in6 and back:

man 3 inet pton

int inet_pton(int af, const char *src, void *dst);

sockaddr in oder sockaddr in6 in String:

man 3 inet ntop

const char *inet_ntop(int af, const void *src,

char *dst, socklen_t size);

247 / 359



Sockets TCP/IP Sockets

TCP/IP: DNS Lookup, Address Conversion

getaddrinfo(): swiss army knife, can transparently handle IPv4 and
IPv6. Please read yourself!

man 3 getaddrinfo

int getaddrinfo(

const char *node,

const char *service,

const struct addrinfo *hints,

struct addrinfo **res);

void freeaddrinfo(struct addrinfo *res);

const char *gai_strerror(int errcode);

248 / 359



Sockets Exercises: TCP/IP

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

249 / 359



Sockets Exercises: TCP/IP

Exercises: TCP/IP

Write a program that ...

... accepts command line arguments host (in dotted-decimal IPv4)
and port

... creates a connection to the application there

... reads one line from standard input, sends it over the connection,
and terminates

250 / 359



Sockets UNIX Domain Sockets

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

251 / 359



Sockets UNIX Domain Sockets

UNIX Domain Sockets

Local and cheap incarnation of an address family

Address is a path in a file system

The usual permissions apply

Permission to connect to a server ⇐⇒ Write permission on its socket

Cheap

No complicated flow control between two machines
No big buffers on either side
Just a piece of kernel memory

252 / 359



Sockets UNIX Domain Sockets

UNIX Domain Sockets: Addresses

man 7 unix

#define UNIX_PATH_MAX 108

struct sockaddr_un {

sa_family_t sun_family;

char sun_path[UNIX_PATH_MAX];

};

253 / 359



Sockets UNIX Domain Sockets

UNIX Domain Sockets: Examples (1)

X11 uses Unix Domain sockets by default (TCP is too insecure):

X11-Server

$ ls -l /tmp/.X11-unix

total 0

srwxrwxrwx 1 root root 0 Feb 7 22:30 X0

254 / 359



Sockets UNIX Domain Sockets

UNIX Domain Sockets: Examples (2)

D-Bus ...

Distribution of system events (“network connected”, “removable
media mounted”, ...)

Communication of desktop components (Doze’s COM)

→ man 1 dbus-daemon

D-Bus daemon, listening

$ ls -l /var/run/dbus

total 0

srwxrwxrwx 1 root root 0 Feb 7 22:30 system_bus_socket

255 / 359



Sockets UNIX Domain Sockets

UNIX Domain Sockets: socketpair()

socketpair(): create a connected pair of Unix domain sockets.
Uses include ...

Inter thread communiction

Testbed for protocol implementation

TCP, serial line, ... → need hardware
Unit tests, saving the need for server and/or hardware setup

...

man 2 socketpair

int socketpair(

int domain, int type, int protocol, int sv[2]);

256 / 359



Sockets Übung: UNIX Domain Sockets

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

257 / 359



Sockets Übung: UNIX Domain Sockets

Übung: UNIX Domain Sockets

Schreiben Sie ein Programm, das wie der TCP-Client aus der letzten
Übung agiert, bloß zur Kommunikation ein UNIX Domain Socket
verwendet

Passen Sie den Server gleichermaßen an — spendieren Sie ihm einen
weiteren Thread, der die Kommunikation über UNIX Domain Sockets
macht.
Der Server sollte vor dem Öffnen des Ports darauf achten, ein
eventuell bereits bestehendes zu löschen.

258 / 359



I/O Multiplexing

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

259 / 359



I/O Multiplexing Basics

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

260 / 359



I/O Multiplexing Basics

Event Loops

Event driven programming ...

Callbacks, as a reaction to events

Many kinds of events

e.g. GUI — a very high level

“Button pressed”
“Button released”
...

Programming paradigm: state machines

→ “Main Event Loop”

261 / 359



I/O Multiplexing Basics

Blocking System Calls

Problems with blocking system calls:

Graceful termination in a multithreaded program

Thread waits for input (in read())
How do I tell him to quit his input loop?

Same with iterative server (sits in accept())

Reactive programs (ones that do not block) have to start one thread
for each blocking task → Horror!

262 / 359



I/O Multiplexing Basics

I/O Multiplexing (1)

Wishlist:

I want to issue a system call (e.g. read() on a socket) only when I
know that it won’t block.

I want to be notified when that is the case.

I want notifications on multiple such media.

When I can do nothing without blocking, I want to block.

I only want to wake up upon one or more notifications.

Fulfillment in Unix:

All wishes come true

Notifications/Events:

“Read now possible without blocking”
“Write now possible without blocking”
“Error”

263 / 359



I/O Multiplexing Basics

I/O Multiplexing (2)

System calls for multi file
descriptor surveillance

select()

poll()

epoll() (Linux specific)

Block the caller until at least one file
descriptor permits desired activity →
“I/O Event”

264 / 359



I/O Multiplexing Basics

select()

man 2 select

int select(int nfds,

fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

void FD_CLR(int fd, fd_set *set);

int FD_ISSET(int fd, fd_set *set);

void FD_SET(int fd, fd_set *set);

void FD_ZERO(fd_set *set);

265 / 359



I/O Multiplexing Basics

poll()

man 2 poll

int poll(struct pollfd *fds, nfds_t nfds, int timeout);

struct pollfd {

int fd; /* file descriptor */

short events; /* requested events */

short revents; /* returned events */

};

266 / 359



I/O Multiplexing Exercise: select() and poll()

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

267 / 359



I/O Multiplexing Exercise: select() and poll()

Exercise: select() and poll()

Write the following server program ...

The main thread has an event loop

At the beginning, the loop maintains a single Unix domain socket —
the “port”. It is used to accept connections. Hint: the port “can
accept without blocking” condition is signaled as input.

Once accepted, connections are also maintained by the loop. The
program reads from them as data arrives, and prints the data to
standard output.

Connections remain open until the client closed them. Hint: the
server sees and end-of-file condition after being notified about input.

268 / 359



I/O Multiplexing Signal Handling, Revisited: signalfd()

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

269 / 359



I/O Multiplexing Signal Handling, Revisited: signalfd()

Signal Handling

Signals are no toy

Signals are no communication medium

Signal handlers are executing in a context that has nothing to do with
normal program context → asynchronous

Why is that so complicated?

History!

Performance: signals save one or two CPU cycles (so they say)

→ in 99.99% of all cases you don’t want it that way!

270 / 359



I/O Multiplexing Signal Handling, Revisited: signalfd()

Synchronous Signal Handling: sigwaitinfo()

Synchronous and blocking signal handling: wait until a signal is
delivered:

man 2 sigwaitinfo

int sigwaitinfo(const sigset_t *set, siginfo_t *info);

int sigtimedwait(const sigset_t *set, siginfo_t *info,

const struct timespec *timeout);

Drawback: an entire thread is blocked

271 / 359



I/O Multiplexing Signal Handling, Revisited: signalfd()

Synchronous Signal Handling: signalfd() (1)

What if ...

1 A signal is an event? (It is)

2 I can receive events through file descriptors ...

3 ... so why can’t I reveive signals through a file descriptor?

man 2 signalfd

int signalfd(int fd, const sigset_t *mask, int flags);

272 / 359



I/O Multiplexing Signal Handling, Revisited: signalfd()

Synchronous Signal Handling: signalfd() (2)

Parameters

mask: set of signals I want to receive through the signal file descriptor

flags: SFD NONBLOCK, SFD CLOEXEC (same semantics as the
corresponding flags to open())

Semantics

read() blocks until a signal is delivered

Then you read a C structure signalfd siginfo → man 2 signalfd

Asynchronous delivery still does happen

→ switch off (block signals) with
sigprocmask()/pthread sigmask()

273 / 359



I/O Multiplexing Signal Handling, Revisited: signalfd()

Synchronous Signal Handling: signalfd() (3)

Advantages:

Events are delivered in a natural way: select(), poll() ...

No damn signal handler necessary

Drawback:

Linux specific

274 / 359



I/O Multiplexing Exercise: signalfd()

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

275 / 359



I/O Multiplexing Exercise: signalfd()

Exercise: signalfd()

Implement a clean shutdown of our server program

Use signalfd() to create a “receive channel” for the usual
shutdown signals SIGINT and SIGTERM

Let it participate in the event loop

Quit the event loop after the receipt of one of those

Before terminating the program, write out a “Goodbye” message (to
easily verify that everything works as intended)

276 / 359



I/O Multiplexing Timers: timerfd create()

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

277 / 359



I/O Multiplexing Timers: timerfd create()

Timers

Traditional Unix ways to let time pass by:

POSIX timers (man 2 timer create)

one-shot oder periodisch
“Event notification” through a signal of your choice

nanosleep() (man 2 nanosleep) to block for a given amount of
time

→ Both are not satisfactory ...

I want real events!

278 / 359



I/O Multiplexing Timers: timerfd create()

Timer Events (1)

man 2 timerfd create

int timerfd_create(int clockid, int flags);

int timerfd_settime(

int fd, int flags,

const struct itimerspec *new_value,

struct itimerspec *old_value);

int timerfd_gettime(

int fd, struct itimerspec *curr_value);

279 / 359



I/O Multiplexing Timers: timerfd create()

Timer Events (2)

Semantics of timerfd create(), timerfd settime() and
timerfd gettime() is the same as of POSIX timers (oneshot,
periodic, ...)

read() blocks until timer runs off. After that a uint64 t is read –
number of timer expirations since last read().

→ Pretty, simple, efficient!

280 / 359



I/O Multiplexing Arbitrary Events: eventfd()

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

281 / 359



I/O Multiplexing Arbitrary Events: eventfd()

Arbitrary Events: eventfd()

The last one: arbitrary events ...

man 2 eventfd

int eventfd(unsigned int initval, int flags);

Content of the “file”: one uint64 t

write() (data: one uint64 t, the addend) adds the value to the
existing content, atomically

read() (conversely, into a uint64 t memory location) reads the
eventfd’s current value, and atomically resets it to zero

Like all file descriptors, select(), poll() can be used

282 / 359



I/O Multiplexing Arbitrary Events: eventfd()

eventfd() Applications

Possible applications of eventfd():

Signaling a “Quit” flag from anywhere. For example, signal handler
to main event loop.

Inter thread communication: “I just produced 42 new elements into
the queue. You may now read from the queue without blocking.”

With a bit of fantasy, 100.000 more

283 / 359



I/O Multiplexing Exercise: eventfd()

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

284 / 359



I/O Multiplexing Exercise: eventfd()

Exercise: eventfd()

To be done!

285 / 359



I/O Multiplexing File Change Events: inotify

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

286 / 359



I/O Multiplexing File Change Events: inotify

File Change Events: inotify (1)

File Change Events: “upcalls” from kernel to userspace, as an
alternative to polling → filesystem change notifications
Usage:

Interactive file system browsers (e.g. Nautilus)

Daemons (e.g. udevd, watching its own rules files for modification)

Again, fits nicely into the world of event driven programming!

287 / 359



I/O Multiplexing File Change Events: inotify

File Change Events: inotify (2)

File descriptor represents an “inotify instance”

The instance contains a set of “watches”: path names with an
associated bitmask (type of change to watch)

A watch is uniquely identified by a “watch descriptor”

Events are consumed using read().

→ man 7 inotify

288 / 359



I/O Multiplexing File Change Events: inotify

File Change Events: inotify (3)

Event Structure

struct inotify_event {

int wd;

uint32_t mask;

uint32_t cookie;

uint32_t len;

char name[];

};

name: if len > 0, contains path to a newly add file (relative to the
directory being watched)

cookie: links together related events (e.g. moves)

289 / 359



Virtual Memory

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

290 / 359



Virtual Memory Virtual Memory

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

291 / 359



Virtual Memory Virtual Memory

Programs (1)

Program = Instruction on how to layout the process’s memory. Consists of:

Header. Identifies the program type (for example, “ELF shared
library”)

Text. Machine code.

Data. Values use to initialize global variables. (Constant values, e.g.
strings)

Relocation Tables. Fixup addresses for dynamically loaded libraries.

Shared Library Informations. Which libraries does the program need,
and in which version?

292 / 359



Virtual Memory Virtual Memory

Programs (2)

ELF header of /bin/ls

$ readelf --file-header /bin/ls

...

Class: ELF64

Type: EXEC (Executa...

Entry point address: 0x4027e0

Start of program headers: 64 (bytes int...

Start of section headers: 108008 (bytes...

...

293 / 359



Virtual Memory Virtual Memory

Programme (3)

Sections of /bin/ls

$ readelf --sections /bin/ls

...

[11] .init PROGBITS 00000000004021e8 000021e8

[13] .text PROGBITS 00000000004027e0 000027e0

[14] .fini PROGBITS 0000000000411d88 00011d88

[15] .rodata PROGBITS 0000000000411da0 00011da0

[21] .dynamic DYNAMIC 0000000000619e18 00019e18

[24] .data PROGBITS 000000000061a300 0001a300

[25] .bss NOBITS 000000000061a520 0001a510

...

294 / 359



Virtual Memory Virtual Memory

The Program Loader /lib/ld-linux.so.2

CPU does not execute programs from disk, but rathe from Memory →
somebody has to take care to load the program into memory.
Loader /lib/ld-linux.so.2

Starts a program on behalf of the kernel (exec())

Reads ELF header, sections, ...

Sets up the virtual address space of the process

Passes control to the “Entry Point”

295 / 359



Virtual Memory Virtual Memory

Memory Layout

Memory layout of a process

Adress space: 32 bit pointers → 4G adressable
memory

Environment: maintained by the kernel

Stack : expanded on-demand by the kernel

Heap: C-Library/malloc()/brk()

Uninitialized data: global variables, initialized with
all zeroes by the loader (mapping of the zero page)

Guard Page

Wonderful reading: lwn.net/Articles/716603/

296 / 359

https://lwn.net/Articles/716603/


Virtual Memory Virtual Memory

Virtual Memory

Virtual memory

Processes don’t have physically
contiguous memory

Illusion “Linear Adress Space →
Indirection

Page: piece of virtual memory
(4K)

Page Table: per-process table of
allocated pages

297 / 359



Virtual Memory Virtual Memory

Shared Memory: “Text”

“Text”: Code, executed by the CPU

Multiple processes run the same
program

→ text is shared

text is not modified → read-only

→ “Memory Mapping”

298 / 359



Virtual Memory Memory Mappings

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

299 / 359



Virtual Memory Memory Mappings

Memory Mappings (1)

Memory Mapping: collection of contiguous pages

Source

File. Mapped memory that is backed by a section of a file on disk.
Anonymous. Memory filled with all zeroes → /dev/zero.

Visibility

Shared. Other process have access. Modification are persisted into the
backing file (if any).
Private. Modifications are not persisted → Copy-on-Write.

300 / 359



Virtual Memory Memory Mappings

Memory Mappings (2)

Combinations and their meanings

Private File Mapping : memory is initialized from the backing file.
Copy-on-write.

Private anonymous Mapping : memory allocation

Shared File Mapping : modifications are visible for others, via the
backing file → communication

Shared anonymous Mapping : invisible for unrelated processes.
fork() inherits mappings → memory shared with child processes.

301 / 359



Virtual Memory Memory Mappings

Memory Mappings: Example (1)

Once again: proc/<PID>/maps

$ cat /proc/self/maps

...

r-xp .. /bin/cat Text of cat
r--p .. /bin/cat Read-only data (constants)
rw-p .. /bin/cat writeable data (bss und initialized)
rw-p .. [heap] dynamically allocated memory (priv. anon.)
rw-p .. [stack] ditto

302 / 359



Virtual Memory Memory Mappings

Memory Mappings: Example (2)

/lib/ld-linux.so.2 at work

$ strace ls

...

open("/lib/libc.so.6", O_RDONLY) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1...

mmap(NULL, 3508264, PROT_READ|PROT_EXEC, MAP_PRIV...

...

Pretty, isn’t it?

303 / 359



Virtual Memory Memory Mappings: System Calls

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

304 / 359



Virtual Memory Memory Mappings: System Calls

Creating Mappings: mmap() (1)

man 2 mmap

void *mmap(

void *addr,

size_t length, int prot, int flags,

int fd, off_t offset);

int munmap(void *addr, size_t length);

Mapping backed by file fd, starting at offset, extending length

bytes.

offset and length should be a multiple of the page size (→ man 2

getpagesize).

305 / 359



Virtual Memory Memory Mappings: System Calls

Creating Mappings: mmap() (2)

Memory protection (prot). SIGSEGV when violated.

PROT EXEC

PROT READ

PROT WRITE

PROT NONE

Flags (flags):

One of MAP SHARED, MAP PRIVATE

MAP ANONYMOUS

306 / 359



Virtual Memory Memory Mappings: System Calls

Flushing Mappings: msync()

File mappings are not autmatically sync with the backing file (same with
write()).

man 2 msync

int msync(void *addr, size_t length, int flags);

MS SYNC: wait until data is out on disk

MS ASYNC: don’t wait

307 / 359



Virtual Memory Memory Mappings: System Calls

Locking: mlock(), mlockall()

File mappings need not be resident → can be loaded on-demand. Quite
the opposite of what realtime is.

man 2 mlock

int mlock(const void *addr, size_t len);

int munlock(const void *addr, size_t len);

int mlockall(int flags);

int munlockall(void);

MCL CURRENT. Lock current memory state into RAM

MCL FUTURE. Lock all that’s to come.

308 / 359



Virtual Memory Memory Mappings: System Calls

Optimization Hints: madvise()

Kernel is happy about hints on how the memory in the mapping will be
used.

man 2 madvise

int madvise(void *addr, size_t length, int advice);

MADV SEQUENTIAL. Sequential access → read-ahead, freeing memory
that has already been passed.

MADV RANDOM. Random access → no read-ahead.

...

309 / 359



POSIX IPC

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

310 / 359



POSIX IPC Basics

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

311 / 359



POSIX IPC Basics

Inter Process Communication (IPC) (1)

Traditional Unix IPC: mechanisms to communicate between unrelated
processes

Semaphores

Shared memory

Message queues

Unrelated : not related via parent/child relationships

312 / 359



POSIX IPC Basics

Inter Process Communication (IPC) (2)

History: two IPC variants ...

System V IPC

Cumbersome, unnecessarily complex API
Older → more portable between Unixen

POSIX IPC

Easy to use
Much of it implemented in userspace (through memory mapped files)
Optional feature in POSIX (fully supported in Linux though)

We’re doing POSIX!

313 / 359



POSIX IPC Basics

POSIX IPC: Overview

IPC object names:

System-wide visibility → just like files

Consistently like so: /some-object-name

API:

Semaphores, shared memory and message queues are opened just like
files. E.g. shm open(), using the same flags.

Just like file descriptors, all types are reference counted.

314 / 359



POSIX IPC Message Queues

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

315 / 359



POSIX IPC Message Queues

Message Queues

Message queue creation parameters:

Maximum number of messages

Maximum size of a single message

→ “Realtime guarantees”

Message priorities:

Messages are sent with a priority

Higher prioritized messages overtake lower prioritized messages

→ man 7 mq overview

316 / 359



POSIX IPC Message Queues

Open/Create: mq open()

man 3 mq open

mqd_t mq_open(const char *name, int oflag);

mqd_t mq_open(const char *name, int oflag, mode_t mode,

struct mq_attr *attr);

In attr the only relevant members are mq flags, mq maxmsg and
mq msgsize.

317 / 359



POSIX IPC Message Queues

Sending/Receiving: mq send(), mq receive()

man 3 mq send

int mq_send(mqd_t mqdes, const char *msg_ptr,

size_t msg_len, unsigned msg_prio);

man 3 mq receive

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr,

size_t msg_len, unsigned *msg_prio);

318 / 359



POSIX IPC Message Queues

Closing/Removing: mq close(), mq unlink()

man 3 mq close

int mq_close(mqd_t mqdes);

man 3 mq unlink

int mq_unlink(const char *name);

Analogy: close() and unlink().

319 / 359



POSIX IPC Message Queues

Notification: mq notify()

Notification: obscure feature, only shown because of its obscurity ...

man 3 mq notify

int mq_notify(mqd_t mqdes, const struct sigevent *sevp);

Please read yourself and be disturbed!

320 / 359



POSIX IPC Message Queues

Message Queues are Files

Obvious implementation: (provided there’s OS infrastructure)

Message queues are implemented as files

Virtual filesystem — mqueue

Notifications can be received more elegantly — select() und poll()!

321 / 359



POSIX IPC Message Queues

Message Queue Filesystem: mqueue

Message queues visible as files:

mqueue File System

# mount -t mqueue blah /mnt/mqueue

# ls -l /mnt/mqueue/my-queue

-rw------- ... /mnt/mqueue/my-queue

# cat /mnt/mqueue/my-queue

QSIZE:0 NOTIFY:0 SIGNO:0 NOTIFY_PID:0

322 / 359



POSIX IPC Semaphores

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

323 / 359



POSIX IPC Semaphores

Semaphores

Creation parameter:

Initial value

→ man 7 sem overview

324 / 359



POSIX IPC Semaphores

Open/Create: sem open()

man 3 sem open

sem_t *sem_open(const char *name, int oflag);

sem_t *sem_open(const char *name, int oflag,

mode_t mode, unsigned int value);

325 / 359



POSIX IPC Semaphores

sem wait(), sem post()

man 3 sem wait

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

int sem_timedwait(

sem_t *sem,

const struct timespec *abs_timeout);

man 3 sem post

int sem_post(sem_t *sem);

326 / 359



POSIX IPC Semaphores

Closing/Removing: sem close(), sem unlink()

man 3 sem close

int sem_close(sem_t *sem);

man 3 sem unlink

int sem_unlink(const char *name);

Analogy: close() and unlink().

327 / 359



POSIX IPC Semaphores

Semaphores are Files

Implemented as file mappings

sem t encapsulates open file descriptor and a void* (the mapped
memory)

/dev/shm is a tmpfs instance

Semaphore

$ ls -l /dev/shm/

total 1604

-rw------- ... sem.my-semaphore

328 / 359



POSIX IPC Shared Memory

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

329 / 359



POSIX IPC Shared Memory

Shared Memory (1)

POSIX shared memory is almost non-existing ...

Small wrapper around existing system calls

shm open(). Does not even pretend to be something special →
explicitly returns a file descriptor

shm close()

→ man 7 shm overview

330 / 359



POSIX IPC Shared Memory

Shared Memory (2)

Further steps:

ftruncate(), to adjust the size

mmap(), to create the mapping

The only reason for the shm * is the “where” → /dev/shm

331 / 359



POSIX IPC Exercise: POSIX Message Queues

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

332 / 359



POSIX IPC Exercise: POSIX Message Queues

Exercise: POSIX Message Queues

Add a POSIX message queue to our server like follows

The client (to be written) opens an existing message queue, sends a
message, and closes the queue afterwards.

The server ...

... creates the message queue in the startup phase

... receives (file descriptor based) notifications in the main loop, and
reads and outputs messages just like the others
... closes and removes the queue in the shutdown phase

333 / 359



Shared Libraries

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

334 / 359



Shared Libraries Basics

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

335 / 359



Shared Libraries Basics

Shared Libraries - Basics

Originally invented to replace static libraries

Resource saving: static C library libc.a has around 4MB →
contained in every single executable

=⇒ identical code loaded in memory multiple times — once per
executable

Shared libraries are loaded in memory only once (code and read-only
data)

Semantics models that of static libraries

336 / 359



Shared Libraries Basics

Shared Libraries - Problems

Executables don’t bring the code that they have been linked against
— rather, somebody else is responsible

→ mistakes happen

Missing libraries
Code compatibility (“DLL Hell”)
...

Careful with C++ → one should know the language very well in order
to prevent incompatibilities

337 / 359



Shared Libraries Basics

Shared Libraries - Features

Version control: different versions of the same library can co-exist

Explicit modules loading (“plugins”)

338 / 359



Shared Libraries Building and Using

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

339 / 359



Shared Libraries Building and Using

Shared Libraries - Building

“Position Independent Code” (PIC): same shared Library can be
loaded at different addresses in different address spaces (processes)

... done on purpose on most current systems (ASLR — Address
Space Layout Randomization)

Shared library building

$ gcc -fPIC -c -o x.o x.c

$ gcc -shared -o libx.so x.o

340 / 359



Shared Libraries Building and Using

Shared Libraries - Linking Against

No difference here ...

Use the library base name

Linker prefers shared libraries over static libraries

Linking against shared libraries

$ gcc -c -o main.o main.c

$ gcc -o main main.o libx.so

# oder so:

$ gcc -o main main.o -L. -lx

341 / 359



Shared Libraries Building and Using

Shared Libraries - Using (1)

Executing is a bit harder ...

Shared libraries aren’t found easily

Standard locations: /lib, /usr/lib, ...

→ Library must be installed there

$ ./main

$ ./main: error while loading shared libraries:

libx.so: cannot open shared object file:

No such file or directory

$ LD_LIBRARY_PATH=. ./main

342 / 359



Shared Libraries Building and Using

Shared Libraries - Using (2)

Shared library search path

1 LD PRELOAD (ausser bei SUID/SGID)

2 rpath in der Shared Library selbst

3 LD LIBRARY PATH (ausser bei SUID/SGID)

4 /etc/ld.so.conf → /etc/ld.so.cache

5 /usr/lib

6 /lib

343 / 359



Shared Libraries Building and Using

Shared Libraries - rpath

Compiled-in search path: rpath

Executable is installed at some vendor-specific location (different from
/usr/bin etc.)

Location known at build time

One does not want to set LD LIBRARY PATH for some reason

One does not want to edit /etc/ld.so.conf for some reason

$ gcc -Wl,-rpath,/some/funny/place -o main main.o libx.so

344 / 359



Shared Libraries Building and Using

Shared Libraries - Dependencies

Libraries and executables depend on libraries. Which ones?

DT NEEDED

$ gcc -o main main.o libx.so

# oder so:

$ gcc -o main main.o -L. -lx

$ readelf --dynamic main

Tag Type Name/Value

0x00000001 (NEEDED) Shared library: [libx.so]

0x00000001 (NEEDED) Shared library: [libc.so.6]

During linking, linker find the shared library that matches the base
name

-lsomething → libsomething.so
More complicated though → demo time

345 / 359



Shared Libraries Explicit Loading

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

346 / 359



Shared Libraries Explicit Loading

Explicit Loading - Overview

Plugins: code is loaded at runtime, based on configuration or something
...

Explicit code loading

“Plugins”

Loader API, in the C library:

dlopen(): load code from a file

dlsym(): search a symbol (difficult with C++)

dlclose(): close/unload

dlerror(): determine error number after one occurred

347 / 359



Shared Libraries Explicit Loading

Explicit Loading - dlopen() (1)

man 3 dlopen

void *dlopen(const char *filename, int flag);

Loads a library, including all of its dependencies (if they aren’t there
already)

filename: name of the library file. Path search rules as with
automatic loading — except when there’s a ’/’ in the name.

348 / 359



Shared Libraries Explicit Loading

Explicit Loading - dlopen() (2)

flags are used to fine-tune behavior ...

RTLD NOW xor RTLD LAZY: symbols are resolved immediately (at load
time), or when they are needed (→ deferred error handling)

RTLD LOCAL: symbols not exported for subsequent dlopen() calls
(“Loading Scope”).

RTLD GLOBAL: the opposite of RTLD LOCAL

RTLD DEEPBIND: symbols in a library are preferred over those that
have been loaded previously → self contained libraries

Careful : default is to not prefer self containment

=⇒ Use RTLD LOCAL|RTLD DEEPBIND to load “plugin” shared objects

349 / 359



Shared Libraries Explicit Loading

Explicit Loading - dlsym()

man 3 dlsym

void *dlsym(void *handle, const char *symbol);

Searches symbol (a C string) in library referred to by handle

NULL if not found

Cast result to wanted function prototype

See manpage for an example

350 / 359



Closing Words

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

351 / 359



Closing Words Books

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

352 / 359



Closing Words Books

Linux/UNIX Userspace

353 / 359



Closing Words Books

POSIX Threads

354 / 359



Closing Words Books

Kernel

355 / 359



Closing Words Summary

Overview

1 Building Blocks of Unix
and Linux

Overview
Processes and Threads
Filesystem
Kernel
User Space

2 Demo Sessions
Processes
Everything is a File

3 Programming Basics
Toolchain and Software
Build
System Calls vs. Library
Functions
Error Handling
Exercises

4 File I/O
Basics
Exercises
Duplicating
Miscellaneous
Exercises

What Has Happened
5 Processes

Basics
Process Attributes
Life Cycle of Processes
Exercise: Processes
Signals
Exercise: Signals

6 File System
Owner, Permissions
Directories and Links

7 POSIX Threads
Basics
Thread Life Cycle
Exercises: Thread
Creation, Race
Condition
Synchronization
Exercises: Mutex
Communication
Exercises: Condition
Variable
Miscellaneous

Last Warning
8 Scheduling and Realtime

Basics
Realtime
Priority Inversion

9 Sockets
Basics
TCP/IP Sockets
Exercises: TCP/IP
UNIX Domain Sockets
Übung: UNIX Domain
Sockets

10 I/O Multiplexing
Basics
Exercise: select() and
poll()

Signal Handling,
Revisited: signalfd()

Exercise: signalfd()

Timers:
timerfd create()

Arbitrary Events:
eventfd()

Exercise: eventfd()

File Change Events:
inotify

11 Virtual Memory
Virtual Memory
Memory Mappings
Memory Mappings:
System Calls

12 POSIX IPC
Basics
Message Queues
Semaphores
Shared Memory
Exercise: POSIX
Message Queues

13 Shared Libraries
Basics
Building and Using
Explicit Loading

14 Closing Words
Books
Summary

356 / 359



Closing Words Summary

Summary

We saw the good sides:

File descriptors in all their beauty

Processes, likewise

Virtual memory, likewise

Fear is appropriate:

Threads – fear is portable to other operating systems though

Signals – fortunately there are ways other than traditional ones

357 / 359



Closing Words Summary

There’s More!

Linux and Unix is a broad field. These topics could fill a couple more
courses:

File locking: locking models in the file system

Permission system, and its Linux specific Extensions

Pipes und FIFOs

Shared libraries (there’s more)

Resource limits

Linux containers

...

358 / 359



Closing Words Summary

But: You Have A Basis!

As always: if you have a big picture, and you understand the principles,
then you can defend yourself against all that’s to come.

With this in mind – ENJOY!!

359 / 359


	Building Blocks of Unix and Linux
	Overview
	Processes and Threads
	Filesystem
	Kernel
	User Space

	Demo Sessions
	Processes
	Everything is a File

	Programming Basics
	Toolchain and Software Build
	System Calls vs. Library Functions
	Error Handling
	Exercises

	File I/O
	Basics
	Exercises
	Duplicating
	Miscellaneous
	Exercises
	What Has Happened

	Processes
	Basics
	Process Attributes
	Life Cycle of Processes
	Exercise: Processes
	Signals
	Exercise: Signals

	File System
	Owner, Permissions
	Directories and Links

	POSIX Threads
	Basics
	Thread Life Cycle
	Exercises: Thread Creation, Race Condition
	Synchronization
	Exercises: Mutex
	Communication
	Exercises: Condition Variable
	Miscellaneous
	Last Warning

	Scheduling and Realtime
	Basics
	Realtime
	Priority Inversion

	Sockets
	Basics
	TCP/IP Sockets
	Exercises: TCP/IP
	UNIX Domain Sockets
	Übung: UNIX Domain Sockets

	I/O Multiplexing
	Basics
	Exercise: select() and poll()
	Signal Handling, Revisited: signalfd()
	Exercise: signalfd()
	Timers: timerfd_create()
	Arbitrary Events: eventfd()
	Exercise: eventfd()
	File Change Events: inotify

	Virtual Memory
	Virtual Memory
	Memory Mappings
	Memory Mappings: System Calls

	POSIX IPC
	Basics
	Message Queues
	Semaphores
	Shared Memory
	Exercise: POSIX Message Queues

	Shared Libraries
	Basics
	Building and Using
	Explicit Loading

	Closing Words
	Books
	Summary


