
The C Programming Language

Jörg Faschingbauer

1 / 398

Table of Contents

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

2 / 398

Introduction

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

3 / 398

Introduction Introduction

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

4 / 398

Introduction Introduction

The Book (1)

The Definitive Book

Brian W. Kernighan,
Dennis M. Ritchie

First edition 1978 →
“K&R” C

Second (and most
recent) edition 1988 →
ANSI C

Most recent standard:
ISO/IEC 9899:2011 →
“C11”

5 / 398

Introduction Introduction

The Book (2)

C is a “small” language

Few central concepts → simple — theoretically at least

Complexity comes from the power of handling raw memory

The book is didactically perfect

Why should a C course be different?

→ This course follows the book (loosely)

6 / 398

Introduction Introduction

The Beginning

There was nothing ...

... but the PDP-11

... and a couple of cool guys

Brian Kernighan, Dennis Ritchie → C

Ken Thompson, Dennis Ritchie → first UNIX

Ken Thompson → first Shell

The rest is history!

7 / 398

Introduction Introduction

Cool Guys and Their Hobby

Kernighan und Ritchie

Brian Kernighan

Dennis Ritchie †2011

8 / 398

Introduction Introduction

History of UNIX

9 / 398

Introduction Hello World

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

10 / 398

Introduction Hello World

My First Program (1)

hello.c

#include <stdio.h>

void main(void)

{

printf("hello, world\n");

}

Build and execute

$ gcc hello.c

$./a.out

hello, world

What we see ...

A program consists of
functions and variables

Functions consist of
statements

Function call
(printf()) is a
statement

main() is special

Building appears simple
but isn’t

stdio.h??

11 / 398

Introduction Hello World

My First Program (2)

#include <stdio.h>

Declarations from the
Standard IO Library (for
printf())

void main(void)
Definition of main().
Required for a program.

{

printf("hello, world\n");

}

Body of main(). Calling
printf() with a string
parameter/argument. \n is
the newline character.

12 / 398

Introduction Hello World

Character Arrays — Strings

Strings are special in C

Character : ...

String : zero terminated character array

Escape sequences, e.g. \n (newline), \t (tabulator), \", \0 (null)

"hello,world\n" corresponds to ...

13 / 398

Introduction Variables and Arithmetic

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

14 / 398

Introduction Variables and Arithmetic

My Second Program (1)

#include <stdio.h>

/* Fahrenheit/Celsius Table

0 - 300, step 20 */

void main(void) {

int fahr, celsius;

int lower = 0, upper = 300, step = 20;

fahr = lower;

while (fahr <= upper) {

celsius = 5 * (fahr - 32) / 9;

printf("%d\t%d\n", fahr, celsius);

fahr = fahr + step;

}

}

15 / 398

Introduction Variables and Arithmetic

My Second Program (2)

/* ... */
Comment (can span multiple
lines)

int fahr, celsius;

Variable definition. Must
come at the beginning of a
block.

int lower = 0, upper = 300,

step = 20;

Variable definition and
initialization

16 / 398

Introduction Variables and Arithmetic

My Second Program (3)

while (fahr <= upper) {

...

}

Loop: “While condition
holds, execute body”
Condition: fahr is less or
equal upper

celsius = 5 * (fahr - 32) / 9;

Usual arithmetic (expression)
→ usual operator precedence
rules

Careful: integer division brutally truncates decimal places!

More natural but always 0: 5/9 * (fahr-32)

17 / 398

Introduction Variables and Arithmetic

My Second Program (4)

printf("%d\t%d\n", fahr, celsius);

Formatted output

→ number of arguments can vary (?)

%d obviously means “integer”

Important: printf() is not part of the core language, but rather an
ordinary library function

→ standard library

18 / 398

Introduction Variables and Arithmetic

More Datatypes

int Integer, nowadays mostly 32 bits wide
float Floating point number, mostly 32 bit
char Single character (one byte, generally)
short Smaller integer
double double precision variant of float

Width and precision of all datatypes is machine dependent!

Compound datatypes: arrays, structures, ... (→ later)

19 / 398

Introduction Variables and Arithmetic

Exercises

Following ugliness comes to mind:

The output is not justified. (Hint: the format string "%6d" creates a
6 character wide right-justified field.)

Integer arithmetic is inappropriate. Temperature conversion are better
done in floating point.

20 / 398

Introduction for Loops

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

21 / 398

Introduction for Loops

for: Loop Simplification (1)

while loop approach:

Fixed number of runs

Counter is initialized

Termination condition is evaluated

Counter is incremented

This can be done simpler!

22 / 398

Introduction for Loops

for: Loop Simplification (2)

for (initialization ; condition ; step)

...

initialization is evaluated exactly once — before entering the loop

condition is evaluated everytime before the loop body is entered. false
→ loop termination

step is evaluated after the loop body, and before the condition

initialization, condition and step are regular statements

23 / 398

Introduction for Loops

Second Program, revisited

#include <stdio.h>

void main(void)

{

int fahr;

for (fahr = 0; fahr <= 300; fahr = fahr+20)

printf("%6d\t%6.2f\n", fahr, 5.0/9 * (fahr - 32));

}

Wherever there can be a variable, there can be an expression

A block ({ and }) is only necessary when the loop body consists of
multiple statements

5.0/9 * (fahr - 32) is float because 5.0 is

24 / 398

Introduction for Loops

Exercise

Use a for loop to compute the temperature table. Do this
backwards, 300 down to 0.

25 / 398

Introduction Symbolic Constants

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

26 / 398

Introduction Symbolic Constants

C Preprocessor: Symbolic Constants

One does not write number literals in a program!

Inflexible

Unreadable (a matter of taste though)

Leads to duplicated code

C Preprocessor replaces symbols with arbitrary strings → Macros

#define LOWER 0

#define UPPER 300

#define STEP 20

27 / 398

Introduction Symbolic Constants

Exercise

Modify the temparature table to use macros!

28 / 398

Introduction Character I/O

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

29 / 398

Introduction Character I/O

The Outside World

stdio.h: functions and constants for I/O

Standard input and output

File I/O

Formatted

Buffered

Most simple ones first:

int c;

c = getchar();

putchar(c);

30 / 398

Introduction Character I/O

cat for the Poor (1)

#include <stdio.h>

void main(void)

{

int c;

c = getchar();

while (c != EOF) {

putchar(c);

c = getchar();

}

}

31 / 398

Introduction Character I/O

cat for the Poor (1)

while (c != EOF)
EOF — End-of-File

!= — not equal

But ugly code duplication: getchar() called twice

Abhilfe

while ((c = getchar()) != EOF)

putchar(c);

An assignment is an
expression =⇒ has a
value

Caution: braces!

32 / 398

Introduction Character I/O

More Examples ...

Counting input characters

long nc = 0;

while (getchar() != EOF)

++nc;

++: increment operator

long: long integer (64
bit, mostly)

Same with for loop and empty body ...

long nc;

for (nc = 0; getchar() != EOF; ++nc);

33 / 398

Introduction Character I/O

More Examples — if

Counting lines: ’\n’ terminates a line

int c, nl = 0;

while ((c = getchar()) != EOF)

if (c == ’\n’)

++nl;

if: alright

==: equality (inappropriate with floating point numbers)

’\n’: character constant for newline (linefeed), ASCII 10 (0A)

34 / 398

Introduction Character I/O

if, Formally

if — else

if (expression)

true-statement

else

false-statement

Statement can be:

Single statement (terminated with ’;’)

Multiple statements, grouped inside {}

35 / 398

Introduction Character I/O

Operators, Formally

Operators for use in expressions

== Equality
!= Inequality
&& Boolean AND
|| Boolean OR
! Boolean NOT

36 / 398

Introduction Character I/O

Exercises

Write a program that reads from standard input and counts
characters, words, and lines. It prints the results on standard output.
(Words are separated by one or more spaces, tabulators, or linefeeds.)

Take into account error scenarios and corner cases. For example:

What if input strats with a space?
What if there are multiple separators between two words?

37 / 398

Introduction Arrays

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

38 / 398

Introduction Arrays

Arrays — Next Program (1)

Nonsensical but illustrative exercise: count digits, whitespace, and
others.

int nwhite = 0, nother = 0;
Counter for whitespace and
rest

int ndigit[10];

for (i = 0; i < 10; ++i)

ndigit[i] = 0;

10 counters for digits 0..9.
Attention: Indexes start at 0

39 / 398

Introduction Arrays

Arrays — Next Program (2)

while ((c = getchar()) != EOF)

if (c >= ’0’ && c <= ’9’)

++ndigit[c-’0’];

else if (c == ’ ’ || c == ’\t’ || c == ’\n’)

++nwhite;

else

++nother;

Matter of style ...

There is only if and else

No elif (as in Python, for example)

=⇒ second if is nested

40 / 398

Introduction Arrays

Exercise

For every possible character, count the number of occurrences in the
input. At program termination (end of file), print a histogram as in
the example below. Printable characters are output as-is,
nonprintable characters are output as their ASCII values.

0 ... |

1 ... |

.

’a’... |xxxxxxxxxxxxxxxxxxxxxxxxx

’b’... |xxxxxxxxxxxxxxxxxx

.

.

41 / 398

Introduction Functions

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

42 / 398

Introduction Functions

Functions

Function (subroutine, procedure): why?

Externalizing code → multiple use

Program structure

Readability

→ Key to modularization

How?

No difference between function and procedure

Function call can be used as value (is an expression)

Except return type is void

43 / 398

Introduction Functions

#include <stdio.h>

int power(int base, int n)

{

int p = 1;

while (n--)

p *= base;

return p;

}

void main(void)

{

int i;

for (i = 0; i < 10; ++i)

printf("2^%d = %d\n", i, power(2, i));

}

44 / 398

Introduction Functions

A Nonsensical Example (1)

int power(int base, int n)

Function name

Names and types of
parameters

Return type

Parameters are local to function

Parameter names only relevant inside function

No conflicts with the outer world

→ caller may use name base and i

45 / 398

Introduction Functions

A Nonsensical Example (2)

int p = 1; Local variable

while (n--)

n-- ... Post increment:
expression’s value is n’s value
before increment

p *= base;
Shorthand for p = p *

base;

return p;
Value of the function as seen
by the caller

46 / 398

Introduction Functions

Definition vs. Declaration (1)

To generate a function call, the compiler wants to know its prototype →
error checks

Number of parameters

Types of parameters

Return type

Historical baggage: implicit function declarations → best avoided using
function declarations

-Wimplicit: warning issued when function called without declaration

-Werror: treat warnings as errors → hygiene

47 / 398

Introduction Functions

Definition vs. Declaration (2)

Declaration: declares prototype without giving a definition

int power(int base, int n);

“I promise that the function
will have this prototype,
please check”

Definition can be given later

... in the same file, after the call

... in a different file (→ later)

48 / 398

Introduction Functions

By Value / By Reference

Parameters are only passed by value

Function receives a local copy of the caller’s value

Modifications not visible to the caller

Pass by reference =⇒ pointers (later)

int power(int base, int n)

{

while (n--) ...

}

Caller does not see
modifications to n

49 / 398

Introduction Functions

Exercise

Modify power.c to only declare power() before the call to it. Give
the implementation after the call, below main().

50 / 398

Introduction Character Arrays

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

51 / 398

Introduction Character Arrays

Strings: Mistake by Design?

Only what is necessary is built-in in C

From today’s point of view C is the language for hardware-oriented
programming

Invented to keep UNIX portable, independent from PDP-11 assembler

→ C itself is the language core — everything else belongs in libraries

Contradiction:

Language core knows what string literals are

7-bit ASCII sufficed at that time → no multibyte character sets, no
need for Unicode

But: much later somebody claimed that “640K is enough”

52 / 398

Introduction Character Arrays

Strings: Definition

String ⇐⇒
Array of characters ...

... terminated by a “null” character

char a_string[] = "hello";

53 / 398

Introduction Character Arrays

Strings: Library Functions

Functions from the standard library

strlen(const char[])

strcpy(char dest[], const char src[])

strncpy(char dest[], const char src[], int maxlen)

strcat(char dest[], const char src[])

strncat(char dest[], char src[], int n)

strcmp(const char lhs[], const char rhs[])

strncmp(const char lhs[], const char rhs[], int maxlen)

Many more → man -s 3 string

54 / 398

Introduction Character Arrays

Strings as Parameters

Strings (like arrays in general) are passed as pointers
=⇒ Modifications visible to the caller

char a_string[] = "hello";

char another_string[10];

...

copy(another_string, a_string);

55 / 398

Introduction Character Arrays

Strings: Dangers

Low level definition leads to errors

Copy: not enough memory allocated to hold the copy

Forget to null-terminate when composing strings by hand

... many many more ...

56 / 398

Introduction Character Arrays

Exercise

Write a (nonsensial) program that ...

Reads standard input line by line. To do so, implement a function
read line(char line[], int maxlen) (which internally uses
getchar())
Outputs the longest line at end of input.

57 / 398

Introduction Lifetime of Variables

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

58 / 398

Introduction Lifetime of Variables

Lifetime

Two classes of variables ...

Local (“automatic”). Lifetime (and visibility) is confined to the
function call.

All variables that we had so far are automatic

Global (“extern”). Lifetime ⇐⇒ program

Another point of view: visibility → later

59 / 398

Introduction Lifetime of Variables

Global Variables

Global variables are evil

They obscure program logic

Side effects through unnecessary persistence

Global constants are ok

There are use cases though ...

Not a use case: laziness

60 / 398

Introduction Lifetime of Variables

Global Variables: How?

Functions (code) can only be defined in global scope

Have access to local variables and other global objects

int i;

void f(void)

{

printf("%d\n", i);

}

61 / 398

Types, Operators, Expressions

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

62 / 398

Types, Operators, Expressions

Type System

A type system is in place, but it is complicated ... at least with
respect to built-in datatypes like integers and floating point numbers

signed and unsigned variants

long and short variants

Signedness of char is machine dependent (i.e. undefined)

Implicit type conversions

Sign propagation

... and lots more ...

→ it is very important to understand how and why

... and to be defensive!

63 / 398

Types, Operators, Expressions Variable Names

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

64 / 398

Types, Operators, Expressions Variable Names

Variable- and Function Names

By law: [A-Za-z]+[A-Za-z0-9]*

Must start with letter or ’ ’

Next may come digits

Reserved names (z.B. while) not allowed

Examples

int _;

char c;

int c_89;

float _avg_temp; /* careful! */

int 1i; /* Error */

Be defensive: the standard states that names starting with underscores
are reserved for standard libraries

65 / 398

Types, Operators, Expressions Data Types, Sizes

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

66 / 398

Types, Operators, Expressions Data Types, Sizes

Standard Data Types And Their Sizes

C knows about the following base types

char: one byte in the machine’s character set (mostly ASCII,
nowadays)

int: integer, as the processor architecture sees fit (nowadays 32 bits,
mostly)

float: single-precision floating point

double: double-precision floating point

Attention: C does not specify the width of any of these types! (“machine
dependent”)

67 / 398

Types, Operators, Expressions Data Types, Sizes

Integer Variants (“Qualifiers”)

Width modification

short int (abbrev: short)

long int (abbrev: long)

long double

Helpers

CHAR BITS: a macro, bits per
character (generally 8,
nowadays)

sizeof: operator, width in
characters

Signs (for all integer types)

signed

unsigned

68 / 398

Types, Operators, Expressions Data Types, Sizes

Widths

Integer widths

Type x86 amd64 arm

char 8 8 8
int 32 32 32
short 16 16 16
long 32 64 32

<stdint.h>

int8 t uint8 t

int16 t uint16 t

int32 t uint32 t

int64 t uint64 t

When to use which ...

It depends (as always)

Program flow (loop counters etc.) are natural integers (preferably
int or unsigned int)

In memory data structure where memory is tight: short

Protocols, persistence: <stdint.h>

69 / 398

Types, Operators, Expressions Constants

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

70 / 398

Types, Operators, Expressions Constants

Constants and Types

Question: which type has e.g. 42?
→ some more rules follow ...

42, 052, 0x2A, 0b010010 int

42l, 42L long

123.456f, 123.456F float

123.456 double

123.456l, 123.456L long double

’a’, ’\141’, ’\x61’ char

’\n’ char

71 / 398

Types, Operators, Expressions Constants

Character Constants: Escape Sequences

\a “Alert”
\b Backspace
\f Formfeed
\n Newline
\r Carriage Return
\t Horizontal TAB
\v Vertical TAB
\\ Backslash
\? Question mark
\’ Single Quote
\" Double Quote
\ooo Octal char value
\xhh Hexadecimal char value

72 / 398

Types, Operators, Expressions Constants

String Constants

String ⇐⇒ array of characters, terminated by null-byte

char hello[] = "hello,world\n";

char hello[] = "hello," "world\n";

char hello[] = "hello,"

"world\n";

Concatenated by compiler

→ String literals may span multiple lines

73 / 398

Types, Operators, Expressions Constants

Character vs. String Constants

Easily confused:

if (’x’ == "x") { /* compiler error */

...

}

’x’ is a character

"x" is a character array (a string)

74 / 398

Types, Operators, Expressions Constants

Symbolic Constants (1)

Preprocessor constants: the good old way to express symbolic constants

#define JAN 0

#define FEB 1

#define MAR 2

...

Preprocessor replaces all occurences in text

Often not desired

too brutal/stupid
alternative: manual maintenance of values → error prone

75 / 398

Types, Operators, Expressions Constants

Symbolic Constants (2)

Enumeration is often more appropriate

enum month {

JAN,

FEB,

MAR,

...

};

Value has integer type

Value is irrelevant, only comparison is

→ switch statement

76 / 398

Types, Operators, Expressions Variable Definitions

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

77 / 398

Types, Operators, Expressions Variable Definitions

Definitions und Initialization

Variables must be known before they can be used

Explicit initialization

int lower, upper, step;

char c;

lower = 0;

upper = 300;

step = 20;

Implicit initialization

int lower = 0, upper = 300, step = 20;

char c;

78 / 398

Types, Operators, Expressions Variable Definitions

Initialization of Automatic Variables

Automatic variables

Defined inside a function (at the beginning of a block)

Initialized at runtime — everytime the code runs

=⇒ arbitrary expressions possible

void some_function(void)

{

/* draw random number out of 0..9 */

int some_variable = random() % 10;

...

}

79 / 398

Types, Operators, Expressions Variable Definitions

Initialization of Global Variables

Global variables

Defined in global scope

Initialized before program start

=⇒ only constant expressions possible (calculated at compilation
time, by the compiler)

const double pi = 3.1415926535897932;

double some_nonsensical_number = pi / 2;

const char msg[] = "hallo";

char msg[] = "hallo"; /* possible compiler warning */

80 / 398

Types, Operators, Expressions Arithmetic Operators

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

81 / 398

Types, Operators, Expressions Arithmetic Operators

Arithmetic Operators (1)

Arithmetic Operators and Operands

Operator Meaning Operand type

* multiplication integer, floatingpoint
/ division integer, floatingpoint
% modulo integer
+ addition integer, floatingpoint
- subtraction integer, floatingpoint

Attention: integer division truncates!

82 / 398

Types, Operators, Expressions Arithmetic Operators

Arithmetic Operators (2)

Precedence rules

Multiplication, division, modulo precede addition, subtraction

Operators with same precedence are associated from left to right

30 / 2 + 1 (30 / 2) + 1 precedence
1 + 30 / 2 1 + (30 / 2) precedence
1 - 2 + 3 (1 - 2) + 3 left-associative
30 / 3 % 2 (30 / 3) % 2 left-associative

83 / 398

Types, Operators, Expressions Relational and Logical Operators

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

84 / 398

Types, Operators, Expressions Relational and Logical Operators

Relational Operators (1)

Operator Meaning Operand type

> greater integer, floatingpoint
>= greater equal integer, floatingpoint
< less integer, floatingpoint
<= less equal integer, floatingpoint
== equal integer, floatingpoint
!= not equal integer, floatingpoint

Attention: == and != is legal for floatingpoint numbers, but not what you
want!

85 / 398

Types, Operators, Expressions Relational and Logical Operators

Relational Operators (2)

Precedence rules

1 All relational operators are preceded by arithmetic operators

2 >, >= ,<, <=

3 ==, !=

Operators with equal precedence are associated from left to right

So what does that mean?

3 - 1 == 2 Arithmetic has precedence
’X’ != ’U’ == 1 It is true that ’X’ is not ’U’
1 == (’X’ != ’U’) Same, explicitly precedented
3 < 1 == 0 == 1 It is true that 3 is not less than 1
0 == 1 < 2 What?!

86 / 398

Types, Operators, Expressions Relational and Logical Operators

Logical (Boolean) Operators

Logical expressions

&& AND
|| OR

Precedence rules

Boolean operators bind less strong than relational and arithmetic
operators

“&&” precedes “||”

Operators with equal precedence are associated from left to right

87 / 398

Types, Operators, Expressions Relational and Logical Operators

Boolean Operators: Short-Circuit

Short-circuit calculation

Boolean expressions are only evaluated to the point where their truth
value is known

→ Elegant and (for beginners at least) unreadable constructs

Counting leading blank lines

int c, num_lf = 0;

while ((c = getchar()) != EOF && c == ’\n’ && ++num_lf);

88 / 398

Types, Operators, Expressions Type Conversions

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

89 / 398

Types, Operators, Expressions Type Conversions

Implicit Type Conversions

Bad news: C does not care much about widths and signs

Assignment to narrower types simply cuts off

Sign propagation is undefined

Sign may change across signed/unsigned assignments

→ History is full of integer overflow bugs, sign bugs etc.

GCC (and other compilers) has options that warn on possible
type-bugs (can be very loud though)

Rules are not easy to comprehend — especially the “Why” → Examples ...

90 / 398

Types, Operators, Expressions Type Conversions

Sign Bugs

Unsigned to signed, same width

unsigned int ui = 4294967295U;

int i = ui;

0xffffffff in 2’s
complement
→ i == -1

the other way around: signed to unsigned

int i = -1;

unsigned int ui = i;

-1 is 0xffffffff in 2’s
complement
→ ui == 4294967295U

This is desired behavior from the very beginning → no compiler error,
no compiler warning!

-Wsign-conversion (more global: -Wconversion)

91 / 398

Types, Operators, Expressions Type Conversions

Truncation

unsigned long ul = 4294967296U;

unsigned int ui = ul;

Unscrupulous conversion (by
brutal truncation) of a 64 bit
number (0x100000000) to a
32 bit number
→ ui == 0

-Wconversion

92 / 398

Types, Operators, Expressions Type Conversions

Sign Propagation

char c = ’\310’;

int ic = c;

char is signed on x86 64

c == -56

-Wconversion

93 / 398

Types, Operators, Expressions Type Conversions

Conversion Using Operators

Hard rule: if an operator gets passed different types, then the “weaker” is
converted to the “stronger” — the result is of the “stronger” type
What does that mean (disregarding unsigned):

If one operand is long double, then the other is converted

else, if one is double, ...

else, if one is float, ...

else, char and short are converted to int

=⇒ int is default type for arithmetic operations

94 / 398

Types, Operators, Expressions Type Conversions

Conversion and unsigned (1)

Hard rule: there is no hard rule. Well almost: when mixing unsigned

and signed integers of the same width, then signed is converted to
unsigned (Gosh!)
Additionally: widths are hardware defined!

-1L < 1U

True: 1U becomes 1L. -1U (unsigned 32) is
less than the “stronger” -1L (signed 64),
and fits in signed 64 losslessly

-1L < 1UL
False: -1L (signed 64) becomes unsigned

64, as dictated by the right hand side.

This is desired behavior from the very beginning → no compiler error,
no compiler warning!

95 / 398

Types, Operators, Expressions Type Conversions

Conversion and unsigned (2)

Beware of mixing!

Not a problem if the signed part can never become negative

Big problem otherwise!

int x;

unsigned int y;

if (x < y) ...

$ gcc -Wsign-compare ...

warning: comparison between signed and unsigned integer expressions

96 / 398

Types, Operators, Expressions Type Conversions

Compiler Warnings

All that is desired behavior (read: historical baggage) → compiler
warnings have to be explicitly enabled

-Wsign-conversion Sign could change
-Wconversion Value and sign ...
-Wsign-compare Comparison with mixed signed value
-Wtype-limits E.g. if (ui >= 0) ...

-Wall Selection of “good” warnings
-Wextra ... more good warnings
-pedantic Does not hurt
-Werror Anti-Sloppiness: warnings become errors

General advice: the more the better!

97 / 398

Types, Operators, Expressions Type Conversions

Last Warning

C’s datatypes are immensely hazardous. More hazardous is, though:

Overengineering

Messy design

Loosing control over one’s data structures

Not knowing ranges of variables

Not being open to program modification

98 / 398

Types, Operators, Expressions Type Conversions

Forced Conversion — Cast

Should an automatic conversion be identified as being wrong (e.g. because
the compiler warns), it can be overridden ...

int x;

unsigned int y;

if (x < (signed)y) ...

99 / 398

Types, Operators, Expressions Increment, Decrement

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

100 / 398

Types, Operators, Expressions Increment, Decrement

Confusion: ++, --

Increment- and decrement-Operators with a subtle difference

i = 5;
Operator Name Value of i afterwards Value of expression

++i Pre-Increment 6 6
i++ Post-Increment 6 5
--i Pre-Decrement 4 4
i-- Post-Decrement 4 5

101 / 398

Types, Operators, Expressions Increment, Decrement

Confused to perfection (1)

No confusion: copying string while ignoring all occurences of character
c ...

void copy_and_omit(char dst[], const char src[], char c)

{

int i = 0, j = 0;

while (src[i] != ’\0’) {

if (src[i] != c) {

dst[j] = src[i];

j = j + 1;

}

i = i + 1;

}

dst[j] = ’\0’;

}

102 / 398

Types, Operators, Expressions Increment, Decrement

Confused to perfection (2)

Real men complain:

So many lines for a trivial thing?

Multiple indexing does not perform!

void copy_and_omit(char dst[], const char src[], char c)

{

int i = 0, j = 0;

char cur;

while ((cur = src[i++]) != ’\0’)

if (cur != c)

dst[j++] = cur;

dst[j] = ’\0’;

}

103 / 398

Types, Operators, Expressions Increment, Decrement

Übungen

Schreiben Sie eine Funktion (und das dazugehörige aufrufende
Programm), die wie das zuvor gesehene Beispiel einen String kopiert,
aber, anstatt ein bestimmtes Zeichen einfach auszulassen, mehrfache
Vorkommen des Zeichen auf eines reduziert!

Statten Sie die Funktion mit Überlaufschutz aus! Dabei erhält die
Funktion einen extra Parameter, der angibt, wie gross der Ziel-String
ist.

104 / 398

Types, Operators, Expressions Bit-Operators

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

105 / 398

Types, Operators, Expressions Bit-Operators

Bit Manipulation

C is a hardware language =⇒ many operators to manipulate individual
bits

& bitwise AND
| bitwise OR
^ bitwise XOR
<< shift left
>> shift right
~ bitwise invert

Why?

Manipulating hardware registers

Saving space (e.g. persistence, protocols)

...

106 / 398

Types, Operators, Expressions Bit-Operators

Bitwise AND and OR

Extract/mask bits

0x4b 01001011

& 0x0c 00001100

0x08 00001000

Add bits

0x4b 01001011

| 0x0c 00001100

0x4f 01001111

107 / 398

Types, Operators, Expressions Bit-Operators

Bitweises XOR

Exclusive OR

0x4b 01001011

^ 0x0c 00001100

0x47 01000111

108 / 398

Types, Operators, Expressions Bit-Operators

Shift Left

0x03 << 2 00000011

0x0c 00001100

0x03 << 7 00000011

0x80 10000000

Filled with zeroes from right

Bits fall off to the left

109 / 398

Types, Operators, Expressions Bit-Operators

Shift Right

0x30 >> 2 00110000

0x0c 00001100

0x30 >> 5 00110000

?????001

Bits fall off to the right

unsigned: filled with zeroes from left

signed: machine dependent

→ Shift operations on signed entities is nonsense anyway

110 / 398

Types, Operators, Expressions Bit-Operators

Inverting (“One’s-Complement”)

~ 0x4c 01001100

0xb3 10110011

111 / 398

Types, Operators, Expressions Assignment with Calculation

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

112 / 398

Types, Operators, Expressions Assignment with Calculation

Combined Operators

The long way

i = i + 2;

arr[j] = arr[j] + 2;

The short way

i += 2;

arr[j] += 2;

Less writing (→ confusion)

Expression evaluated only once → performance

Applies to +, -, *, /, %, <<, >>, &, ^, |

113 / 398

Types, Operators, Expressions ?: — Conditional Expression

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

114 / 398

Types, Operators, Expressions ?: — Conditional Expression

?: — Conditional Expression (1)

The long way

int max(int a, int b)

{

int z;

if (a > b)

z = a;

else

z = b;

return z;

}

115 / 398

Types, Operators, Expressions ?: — Conditional Expression

?: — Conditional Expression (2)

The short way

int max(int a, int b)

{

return (a > b)? a: b;

}

Saving space

Usable as expression

116 / 398

Types, Operators, Expressions Precedence, Associativity

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

117 / 398

Types, Operators, Expressions Precedence, Associativity

Summary: Operators

Operators seen thus far

Arithmetic (unary and binary)

Comparison

Boolean

Bitwise

Assignment (combined)

Conditional expression

118 / 398

Types, Operators, Expressions Precedence, Associativity

Operators: Precedence und Associativity (1)

Operator Table

Ordered by precedence (strongest binding first)

Left- or right associativity at equal precedence

Attention

Precedence und associativity often not intuitive

E.g.: x | y < z ⇐⇒ x | (y < z)

→ difficult to comprehend and remember

Use braces to make precedence explicit

→ for yourself and for your successor

119 / 398

Types, Operators, Expressions Precedence, Associativity

Operators: Precedence und Associativity (2)

Operator Associativity

(), [], ->, . left
!, ~, ++, --, +, -, *, &, (type), sizeof right (unary operators)
*, /, % left
+, - left
<<, >> left
<, <=, >, >= left
==, != left
& left
^ left
| left
&& left
|| left
?: right
=, +=, -=, *=, /=, %=, &=, ^=, |=, <<=, >>= right
, left 120 / 398

Types, Operators, Expressions Precedence, Associativity

More Warnings

The order in which operands are evaluated is unspecified (compiler
dependent)

x = f() + g(); /* DANGER! */

The order in which function parameters are evaluated is unspecified
(compiler dependent)

f(++i, i); /* DANGER! */

a[i] = i++; /* MORE DANGER */

121 / 398

Program Flow

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

122 / 398

Program Flow Statements and Blocks

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

123 / 398

Program Flow Statements and Blocks

Statement vs. Block

Single statements terminated with “;”

a = 1;

f(a);

Block (“compound statement”) is a group of statements →
syntactically equivalent to a single statement

{

a = 1;

f(a);

}

Attention: no “;”

124 / 398

Program Flow if — else

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

125 / 398

Program Flow if — else

Branches

If condition holds true, then we do this, else we do that ...

if (condition)

this

else

that

this und that are statements ...

if (a < 0)

a = -a;

else {

a = a;

fprintf(stderr, "alright\n");

}

126 / 398

Program Flow if — else

True or False? What is Truth?

if (condition)

...

condition is an expression

An expression has a value

In if (other similar statements) its value is used as condition

0 ... condition does not hold → false

Everything else ... → true

127 / 398

Program Flow if — else

else is optional (1)

if may be followed by an else branch (but need not)

if (condition)

if (another-condition)

this

else

that

Ambiguity: where does the else branch belong?

128 / 398

Program Flow if — else

else is optional (2)

Dangling else: compiler does not care about indentation =⇒ careful!

if (condition)

if (another-condition)

this

else

that

Braces required!

if (condition) {

if (another-condition)

this

}

else

that

129 / 398

Program Flow else — if

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

130 / 398

Program Flow else — if

Style Matters

Very popular: multiple cases in a row

if (condition)

this

else if (another-condition)

that

else if (one-more)

...

else

rest

More appropriate in such cases: switch

131 / 398

Program Flow switch

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

132 / 398

Program Flow switch

Case Distinctions

Problem: if - else if ... - else

Much typing

... especially when checking for equality of integers

Direct jump table (compiler generated) would be more efficient

133 / 398

Program Flow switch

if - else if vs. switch

if (c == ’ ’)

...

else if (c == ’\n’ ||

c == ’\t’)

...

else

...

switch (c) {

case ’ ’:

...

break;

case ’\n’:

case ’\t’:

...

break;

default:

...

}

134 / 398

Program Flow switch

switch

Labels must only be constants (and constant expressions), no
variables

known at compile time

Equality → code starting at label is executed, until the end of
switch statement

break: fall through otherwise

fall through sometimes desired, but mostly not → careful!

default label is optional

When do I use it?

Finite number of values (e.g. states of a state machines)

switch over enum without default: compiler can warn about
missing label → very useful!

135 / 398

Program Flow Loops: while and for

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

136 / 398

Program Flow Loops: while and for

while: general purpose loop

while (condition is true)

do something

Most general looping construct

Serves all uses

With a couple of extra variables everything is doable

... in many cases complicated though

→ for, do - while

137 / 398

Program Flow Loops: while and for

From while to for (1)

Iteration over sets of elements using while

Iteration using while

i = 0;

sum = 0;

while (i < 100) {

sum += i;

++i;

}

Generally

init-expression

while (cond-expression) {

body-statement

next-expression

}

138 / 398

Program Flow Loops: while and for

From while to for (2)

The following constructs are equivalent:

init-expression

while (cond-expression) {

body-statement

next-expression

}

for (init-expression ; cond-expression ; next-expression)

body-statement

Plus:

init-expression, cond-expression and next-expression are optional

139 / 398

Program Flow Loops: while and for

for, a Little Closer

for (i = 0, sum = 0; i < 100; ++i)

sum += i;

init-expression i = 0, sum = 0

cond-expression i < 100

next-expression ++i

140 / 398

Program Flow Loops: while and for

Comma Operator

Comma operator:

The expression expr-1, expr-2 has the value expr-2

The operator “,” is left-associative

Precedence: lowest precedenceof all operators (see operator table)

wert = expr-1, expr-2 ; /* expr-2 */

wert = expr-1, expr-2, expr-3 ; /* expr-3 */

wert = 1, 2, 3; /* 3 */

141 / 398

Program Flow Loops: while and for

for: Infamous Idioms

C is infamous for excessive compactness ...

As above, only more compact

for (i = 0, sum = 0; i < 100; sum += i++);

Infinite loop

for (;;) {

mach_was();

sleep(5);

}

A crash, in microcontroller terminology

for (;;);

142 / 398

Program Flow Loops: do - while

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

143 / 398

Program Flow Loops: do - while

do - while: Bedingung am Ende

do

do-something

while (condition);

Condition is checked after body

=⇒ body is executed at least once

144 / 398

Program Flow break and continue

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

145 / 398

Program Flow break and continue

break and continue

Loop control apart from the condition

break: terminates innermost enclosing loop or switch

Nesting: outer loop/switch not concerned

continue: next loop iteration

Loop condition is checked
for: next-expression evaluated

for (i = 0; i < strlen(input); ++i) {

if (!isprint(input[i]))

/* do nothing for nonprintable chars */

continue;

error = do_something(input[i]);

if (error)

break;

}

146 / 398

Program Flow goto and Labels

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

147 / 398

Program Flow goto and Labels

Structured Programming vs. goto

Structured programming:

Only controlled program flow

Loops and branches

At most break and continue

only one level concerned

goto is the exact opposite

Jump statement out of 10 nested loops

→ Massacre

Edsger Dijkstra, 1968: “Goto Considered Harmful”

→ Plea for structured programming

148 / 398

Program Flow goto and Labels

goto: Definition

C offers easy ways to do what you want

Dennis Ritchie: “There is no spirit of C!”

Jörg Faschingbauer: there is!

Definition of goto:

goto label;

label is the name of a place inside the function

→ label is only locally visible

Naming rules: like a variable

goto can jump to arbitrary places inside the function

149 / 398

Program Flow goto and Labels

goto: Use Cases

Manifold, but ...

Easily shot in the foot

Suggestion: use
judiciously error handling

Linux Kernel is full of it

int do_complicated_stuff(void)

{

while (...) {

...

for (...) {

if (error)

goto out;

}

}

return 0;

out:

cleanup_mess();

return -1;

}

150 / 398

Functions and Program Structure

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

151 / 398

Functions and Program Structure Basics

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

152 / 398

Functions and Program Structure Basics

Nesting

Global objects

Variables
Functions

Local objects

Variables

Functions cannot be
defined locally

int global;

void f(void)

{

int local;

/* visibility: */

local = global;

}

153 / 398

Functions and Program Structure Basics

Modularization

No non-trivial program consists of only one source file → modularization

Code in multiple files

Separate compilation

Organization in (shared) libraries

Combining (linking) of separately compiled entities into an executable
program

Re-use: building different programs from the same modules

154 / 398

Functions and Program Structure Basics

Declaration vs. Definition

Declaration: compiler needs to know things (“objects”) in order to treat
them right. It doesn’t need to know where in memory they are though —
only the type.
Definition: setting aside memory for objects.
A definition ist eine declaration, but not vice versa.

Variables

Until now we only declared und at the same time defined variables
Pure declaration possible → (“extern”)

Functions: usually only declared before use, and defined separately.

155 / 398

Functions and Program Structure Basics

A Monolithic Program

void g(void); /* Declaration */

void main(void)

{

g(); /* Use */

}

void f(void); /* Declaration */

void g(void) /* Definition */

{

printf("g()\n");
f(); /* Use */

}

void f(void) /* Definition */

{

printf("f()\n");
}

156 / 398

Functions and Program Structure Basics

Separate Compilation

f.c

void f(void)

{

printf("f()\n");

}

g.c

void f(void);

void g(void)

{

printf("g()\n");

f();

}

main.c

void g(void);

void main(void)

{

g();

}

Built like so:

$ gcc main.c f.c g.c

157 / 398

Functions and Program Structure Extern/Global Variables

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

158 / 398

Functions and Program Structure Extern/Global Variables

Variables: Declaration and Definition

Functions

Functions are complex

→ usually not written on one line

Readability → separate declaration and definition

... even when defined and called inside the same source file

Variables

Usually written on one line → declaration and definition

→ no need for a declaration

But: how does one declare a variable (make it known to the compiler
without allocating memory), and define it in a different file?

159 / 398

Functions and Program Structure Extern/Global Variables

Variables: Separating Declaration from Definition (1)

main.c

extern int g lobal;

void print g(void);

void main(void)

{

g lobal = 100;

print g();

}

g.c

#include <stdio.h>

int g_lobal;

void print_g(void)

{

printf("%d\n",

g_lobal);

}

160 / 398

Functions and Program Structure Extern/Global Variables

Variables: Separating Declaration from Definition (2)

Compiler and linker work together

extern variable declaration → explicitly marked as declaration

Compiler does not set aside memory

There is no address yet → Compiler cannot insert address where
variable is used

→ Inserts a reference, to be resolved by the linker

161 / 398

Functions and Program Structure Header Files

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

162 / 398

Functions and Program Structure Header Files

Declarations: Problems (1)

Declarations must exactly match corresponding definitions

main.c

extern int g lobal;

void print g(void);

void main(void)

{

g lobal = 100;

print g();

}

g.c

double g lobal;

void print g(

const char[] format)

{

...

}

163 / 398

Functions and Program Structure Header Files

Declarations: Problems (2)

Severe bugs

Incorrect linkage: perception of user does not match definition

Hard to detect: no tool support — only discipline and conventions

At best: segmentation fault → crash

At worst: appears to work, but in fact doesn’t

Solution

Centralize declarations → header files

#include "g.h", rather than giving declarations by hand

164 / 398

Functions and Program Structure Header Files

Declarations: Solutions

g.h

#ifndef G_H

#define G_H

extern double g_lobal;

void print_g(

const char[] format);

#endif

g.c

// have compiler check

// declaration/definition

// consistency

#include <g.h>

double g_lobal;

void print_g(

const char[] format)

{

...

}

main.c

#include "g.h"

...

165 / 398

Functions and Program Structure Static Variablen

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

166 / 398

Functions and Program Structure Static Variablen

Lifetime and Visibility (1)

Time span where a variable is alive (its address is valid)

The time of a function call → automatic variable

The entire program

Visibility of a variable

Inside the where it is defined → internal Variable

Inside the file where is is defined

Across the entire programx

167 / 398

Functions and Program Structure Static Variablen

Lifetime and Visibility (2)

Lifetime
Function Program

Visibility
Function local: int i; local: static int i;

File — global: static int i;

Program — global: int i;

168 / 398

Functions and Program Structure Static Variablen

Automatic Variables

Visibility: function

Lifetime: function

void f(void)

{

int i;

}

169 / 398

Functions and Program Structure Static Variablen

Local static Variable

Visible only inside the function where it is defined

Retaines it value across function calls

Visible: function

Lifetime: program

void f(void)

{

static int i;

}

170 / 398

Functions and Program Structure Static Variablen

Global static Variable

Visible only inside the file where it has been defined; retains its value
during program lifetime

Visible: file

Lifetime: program
static int i;

171 / 398

Functions and Program Structure Static Variablen

Global Variable

Visible across all files; retains its value during program lifetime

Visible: program

Lifetime: Program
int i;

172 / 398

Functions and Program Structure C Preprocessor: Basics

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

173 / 398

Functions and Program Structure C Preprocessor: Basics

The C Preprocessor: Why !

Dirty Hack!

Has nothing to do with the language itself

Invented to quickly solve problems in an ad hoc manner —
completely ignoring the language

Brutal and stupid text replacement

→ Please use cautiously!

174 / 398

Functions and Program Structure C Preprocessor: Basics

#include

Include the content of a file at the point in the source file where
#include is written
Two incarnations, with a subtle difference

#include "file.h": search first in the directory where the
“includer” is, and then along the search path

#include <file.h>: searches only along the include path

No rules, but ...

Header files contain declarations and macros

Header files generally include header files: have to protect themselves
against multiple inclusion → include guards

#include always comes near the beginning of a source file — never
inside

175 / 398

Functions and Program Structure C Preprocessor: Basics

Macros: Text Replacement

Macro: definition of a token that is brutally replaced

#define forever for (;;)

...

forever {

sleep(1);

printf("No way out!");

}

176 / 398

Functions and Program Structure C Preprocessor: Basics

Macros: Constant Definition

#define LOWER 0

#define UPPER 300

#define STEP 20

for (i = LOWER; i < UPPER; i += STEP)

...

Better: C99 const Keyword

const int LOWER = 0;

→ Typed immutable variable

177 / 398

Functions and Program Structure C Preprocessor: Basics

Macros: Inline Replacement as Function Call (1)

Original problem

Function calls are slow

Parameter passing → copy

Return → copy

#define max(a, b) (((a) > (b))? (a) : (b))

...

x = max(1, 2);

→ Statement is expanded as if it were a function call
But ...

178 / 398

Functions and Program Structure C Preprocessor: Basics

Macros: Inline Replacement as Function Call (2)

Braces are necessary:

/* #define max(a, b) (((a) > (b))? (a) : (b)) */

#define max(a, b) ((a > b)? a : b)

...

x = max(p+q, r+s);

brutally expands to ...

x = (p+q > r+s) ? p+q : r+s;

→ Operator precedence massacre!

179 / 398

Functions and Program Structure C Preprocessor: Basics

Macros: Inline Replacement as Function Call (3)

C99: inline keyword

inline int max(int a, int b)

{

return (a > b)? a : b;

}

Drawback: cannot use max() with different types

180 / 398

Functions and Program Structure C Preprocessor: Basics

Macros: Inline Replacement as Function Call (4)

One more thing:

#define max(a, b) (((a) > (b))? (a) : (b))

...

x = max(i++, j++);

brutally expands to ...

x = ((i++) > (j++)) ? (i++) : (j++);

→ Parameters are evaluated more than once!

181 / 398

Functions and Program Structure C Preprocessor: Basics

Include Guards (1)

a.h

#include "c.h"

b.h

#include "c.h"

c.h

extern int g_lobal;

main.h

#include "a.h"

#include "b.h"

→ Error: multiple declaration of g lobal

182 / 398

Functions and Program Structure C Preprocessor: Basics

Include Guards (2)

Solution: define a “guard” macro by hand (!)

c.h

#ifndef HAVE_C_H

#define HAVE_C_H

extern int g_lobal;

#endif

OMG!

By hand — after all, it’s got nothing to do with C

→ Bugs/errors are the logical consequence (e.g. guard macro clashes)

→ GCC Extension: #include once

183 / 398

Functions and Program Structure C Preprocessor: Basics

The C Preprocessor: Last Words

C is low-level but not stupid

The C preprocessor is stupid

C programmers can take it

Newbies not

Unnecessary hurdle

→ Stupid!

184 / 398

Functions and Program Structure C Preprocessor: More

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

185 / 398

Functions and Program Structure C Preprocessor: More

Conditional Compilation: Rules

Directives

#if Preprocessor condition (simple arithmetics, at most)
#ifdef Definedness of a macro (regardless of its value)
#ifndef Not-definedness of a macro
#else (no comment)
#elif as opposed to C’s else if

#endif (no comment)

Operators for use with if and elif

defined Definedness of a macro
! Boolean NOT
&& Boolean AND
|| Boolean OR
== Equal
!= Unequal

186 / 398

Functions and Program Structure C Preprocessor: More

Conditional Compilation: Examples

Commenting out lines

#if 0 /* argh, there’s a bug somewhere */

int i;

for (i=0; i<2; i--)

do_something();

#else

do_something();

do_something();

#endif

Multiple Conditions Combined

#if defined DEBUG && NUMBER == 3

fprintf(stderr, "NUMBER equals 3\n");

#endif

187 / 398

Functions and Program Structure C Preprocessor: More

Conditional Compilation: Last Words

Conditional compilation ...

Doesn’t make code more readable

Begs for errors

Is quite tempting to use in a hurry

Typical uses

Same code on multiple OS’s

Better to extract OS-specific concepts
Define clear separation between OS independent and OS dependent
code
Avoid inline #ifdef’s (maintenance horror)

“Release” and “Debug” versions of the same code base

Again: avoid inline #ifdef’s
Define macros that expand appropriately

188 / 398

Functions and Program Structure C Preprocessor: More

Macros: Spanning Multiple Lines

Macro definition can only span one line → line continuation

(Extremely Nonsensical) Multiline Macro

#define forever(body) \

for (;;) { \

body; \

}

...

int x = 1;

forever(printf("%d\n", x); ++x;);

...

189 / 398

Functions and Program Structure C Preprocessor: More

Macros: Multiple Statements as One Statement (1)

A Block Is Not a Statement

#define do_much() \

{ \

do_this(); \

do_that(); \

}

...

if (42)

do_much(); /* ERROR! */

else

do_less();

190 / 398

Functions and Program Structure C Preprocessor: More

Macros: Multiple Statements as One Statement (2)

Employ a little trick ...

Making A Block Into Statement

#define do_much() \

do { \

do_this(); \

do_that(); \

} while (0)

Silence Warnings of Microsoft’s C Implementation

__pragma(warning(push))

__pragma(warning(disable:4127))

...

__pragma(warning(pop))

191 / 398

Functions and Program Structure C Preprocessor: More

Stringification (1)

Commmon problem: output a C expression

Macro Usage in Code
...

WARN_IF(i>10);

...

Should yield on stderr

Appearance on stderr

WARNING: i>10

192 / 398

Functions and Program Structure C Preprocessor: More

Stringification (2)

Solution: Stringification

#define WARN_IF(expr) \

do { \

if (expr) \

fprintf(stderr, "WARNING: " #expr "\n"); \

} while (0)

Macro argument is used twice ...

evaluated as C in the if statemant

converted into a C string using #

193 / 398

Functions and Program Structure C Preprocessor: More

Token Pasting (1)

Common Problem: construct C identifiers from macro parameters

Redundant Code

struct command

{

char *name;

void (*function) (void);

};

struct command commands[] =

{

{ "help", function_help },

{ "quit", function_quit }

};

194 / 398

Functions and Program Structure C Preprocessor: More

Token Pasting (2)

Solution: Token Pasting

#define COMMAND(name) { #name, function_ ## name }

struct command commands[] =

{

COMMAND(help),

COMMAND(quit)

};

195 / 398

Functions and Program Structure C Preprocessor: More

Warnings and Errors

void inject_virus(HANDLE doomed_process)

{

#ifdef WIN32

void *foreign_mem = VirtualAllocEx(

doomed_process,

0,

8192,

MEM_COMMIT,

PAGE_EXECUTE|PAGE_READWRITE);

...

#else

error cannot infect foreign processes

#endif

}

196 / 398

Functions and Program Structure C Preprocessor: More

Predefined Macros (1)

FILE Name of current input file (C string)
LINE Current line current input file (integer)

#define WARN_IF(expr) \

do { \

if (expr) \

fprintf(stderr, "%s:%d: WARNING: " #expr "\n", \

__FILE__, __LINE__); \

} while (0)

Gives the position where WARN IF was expanded, not where WARN IF

was defined

197 / 398

Functions and Program Structure C Preprocessor: More

The C Preprocessor: Last Words

Always think twice! First thought is likely wrong.

Inline preprocessorisms pollute code

Code should be kept readable and obvious

Push down preprocessorisms into (architecture) specific places

Well defined selection macros
Forwarding-Headers
Common abstractions

Refactor immediately when smell detected!

It is like the pest!

198 / 398

Pointers and Arrays

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

199 / 398

Pointers and Arrays Pointers and Arrays

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

200 / 398

Pointers and Arrays Pointers and Arrays

Pointers: Basics

Pointer ⇐⇒ Memory address

Variable that points to another variable

Basis for e.g. call-by-reference

Simple in theory

Practically difficult and dangerous

Pointer to integer (64 bit)

201 / 398

Pointers and Arrays Pointers and Arrays

Pointer: Operators

Operations

Taking an address: what is the address of the variable i?

Dereferencing : what is the content of the memory location that a
pointer points to?

Taking an address

int i = 35129;

int *pi;

pi = &i;

Dereferencing

int value = *pi;

/* value == 35129 */

202 / 398

Pointers and Arrays Pointers and Arrays

More Examples

int x = 1, y = 2;

int *pi; /* pointer to int */

pi = &x; /* "pi points to x" */

pi == 1; / true */

x = 42;

pi == 42; / true */

pi = &y;

pi == 2; / true */

*pi = *pi + 1;

*pi += 1;

y == 4; /* true */

pi = 0; /* null pointer */

203 / 398

Pointers and Arrays Pointers as Function Parameters

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

204 / 398

Pointers and Arrays Pointers as Function Parameters

Call by Reference (1)

Problem: in C,
parameters are passed
by-copy — callee see
copies of the caller’s
values.

Question: how can I use
a function to modify the
caller’s value?

void f(int a)

{

a = 42;

}

void main(void)

{

int i = 1;

f(i);

/* i is still 1 */

}

205 / 398

Pointers and Arrays Pointers as Function Parameters

Call by Reference (2)

Solution: pointer

void f(int *a)

{

*a = 42;

}

void main(void)

{

int i = 1;

f(&i);

}

206 / 398

Pointers and Arrays Pointers as Function Parameters

Exercise

Write a function swap() that excanges the content of two integer
variables!

207 / 398

Pointers and Arrays Pointers and Arrays

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

208 / 398

Pointers and Arrays Pointers and Arrays

It’s Only Memory

Pointers and arrays are closely related to each other

Automatic conversion array → pointer

Array-type function parameters are in fact pointers to the first (0-th)
array element

Index operator (a[i]) is pointer arithmetic

True strength of C

int a[] = { 42, 1, 23 };

char str[] = { ’h’, ’a’, ’l’, ’l’, ’o’, ’\0’ };

int *pa1 = &a[0];

int *pa2 = a;

209 / 398

Pointers and Arrays Pointers and Arrays

Conversion Array → Pointer

int a[3];

int *pa1 = &a[0];

int *pa2 = a;

210 / 398

Pointers and Arrays Pointers and Arrays

Pointer Arithmetic (1)

Pointer and array index

Pointer + Integer =
Pointer

Equivalent to subscript
(“index”) operator

Just like subscript there
is no range check being
made

→ Errors happen

But: performance!

211 / 398

Pointers and Arrays Pointers and Arrays

Pointer Arithmetic (2)

Pointer increment

int *pa = a;

++pa;

Pointer decrement

int *pa = &a[1];

--pa;

212 / 398

Pointers and Arrays Pointers and Arrays

Pointer Arithmetic (3)

Pointers don’t necessarily have to point to something that is valid ...

*pa = a + 4;

pa -= 2;

i = *pa; /* ok */

*pa = a - 1;

pa += 2;

i = *pa; /* ok */

213 / 398

Pointers and Arrays Pointers and Arrays

Pointer Arithmetic: Difference

How many elements are there between two pointers?

p = &a[0];

q = &a[2];

num = q - p; /* 2 */

Often (C++ STL) it is done like so:

Beginning of an array (“a set of elements” is the pointer to the first
element

end is pointer to one past the last valid element

214 / 398

Pointers and Arrays Pointers and Arrays

Pointer Arithmetic: Array Algorithms

Iterating over all elements of the array

int sum(const int *begin, const int *end)

{

int sum = 0;

while (begin < end)

sum += *begin++; /* precedence? what? */

return sum;

}

Beautiful, isn’t it?

215 / 398

Pointers and Arrays Pointers and Arrays

Pointer Arithmetic: Jump Width? (1)

So far: pointer to int — how are arrays of other (even compound) types
handled?
→ just the same!

Pointer + n: points n elements further

Type system is not stupid (only sometimes)

Pointer know which type is being pointed to

Be careful with void and void*: sizeof(void) is undefined!

216 / 398

Pointers and Arrays Pointers and Arrays

Pointer Arithmetic: Jump Width? (2)

struct point

{

int x, y;

};

struct point points[3], *begin, *end;

begin = points;

end = points + sizeof(points)/sizeof(struct point);

while (begin < end) {

...

++begin;

}

217 / 398

Pointers and Arrays Pointers and Arrays

Pointer Arithmetic: Arbitrary Datatypes

sizeof : size (in bytes) of
a type/variable

sizeof(int)

sizeof(struct point)

sizeof(i)

sizeof(pi)

sizeof(pp)

218 / 398

Pointers and Arrays Commandline

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

219 / 398

Pointers and Arrays Commandline

main() can take parameters

So far: void main(void)

A process has an exit status → implicitly int main(...)

→ Compiler magic: main() is special

C++: compiler error if main() does not return an int Returnwert
hat

No commandline arguments expected → main(void)

→ How are commandline arguments passed?

220 / 398

Pointers and Arrays Commandline

Commandline Arguments

int main(int argc, char **argv)

{

char *opt = argv[1]; /* "-l" */

char *dir = argv[2]; /* "/tmp" */

...

}

ls -l /tmp

221 / 398

Structures

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

222 / 398

Structures Basics

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

223 / 398

Structures Basics

struct: compound datatypes

So far we had ...

Scalar datatypes: int, float, ...

Pointers

Now for some ... design

Fantasy:

Pointers give us power to do more

How do we build more complex data structures?

Linked lists
Balanced trees
...

224 / 398

Structures Basics

struct: how?

Short and to the point ...

/* type declaration - no memory set aside */

struct point

{

int x;

int y;

};

/* set aside memory for two points */

struct point p1, p2;

New type: struct point

Used just the same as other types

225 / 398

Structures Basics

Usage

Operations

Initialization

Copy ...

Assignment
Parameter passing
Return from function

Member access

/* initialization */

struct point p = { 42, 7 };

/* member access */

p.x = 1;

/* assignment */

p2 = p;

226 / 398

Structures Basics

Nested Structures

Nesting

Nesting is possible

But: structures become large
through nesting

Call-by-value (and return)
makes copies!

struct rect

{

struct point p1;

struct point p2;

};

227 / 398

Structures Basics

Memory Layout

Structure ⇐⇒ flat
memory

Linear sequence of bytes

Copy (assignment,
parameter, return) of
memory is made

struct rect

{

struct point p1;

struct point p2;

};

228 / 398

Structures Basics

Recursive Structures?

struct xxx

{

struct xxx x;

};

That particular structure would be infinitely large

→ Compiler error

→ Pointers

229 / 398

Structures struct, Functions

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

230 / 398

Structures struct, Functions

Parameters and Return (1)

Returning entire structures

“Constructor”

struct point makepoint(int x, int y)

{

struct point p;

p.x = x;

p.y = y;

return p;

}

231 / 398

Structures struct, Functions

Parameters and Return (2)

Entire structure as parameter

struct point addpoints(struct point lhs, struct point rhs)

{

lhs.x += rhs.x;

lhs.y += rhs.y;

return lhs;

}

Question: does the caller see the modification of lhs?

232 / 398

Structures struct, Functions

Parameters and Return (3)

Pointers to structures (“call by reference”)

void addtopoint(struct point *lhs, struct point rhs)

{

(*lhs).x += rhs.x; /* precedence! */

(*lhs).y += rhs.y;

}

Pointers to structures are very common → shortcut “->”

void addtopoint(struct point *lhs, struct point rhs)

{

lhs->x += rhs.x;

lhs->y += rhs.y;

}

233 / 398

Structures typedef: Type Alias

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

234 / 398

Structures typedef: Type Alias

Alias for Type Names

Why?

Semantics of a type is one story

Implementation is another story

Type names can become long

typedef unsigned long int uint64_t;

typedef int pid_t;

→ Type name and alias name are equivalent

235 / 398

More Naked Memory

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

236 / 398

More Naked Memory Dynamic Memory

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

237 / 398

More Naked Memory Dynamic Memory

Stack and Global Memory

Stack

One stack frame per function call

Local variables live there

→ Lifetime is the duration of the function call

Global memory

Global Variables

“Allocated” at program start

Lifetime: entire program

What’s in between? → explicit lifetime

238 / 398

More Naked Memory Dynamic Memory

Dynamic Memory

Heap memory

Not part of the core
language

→ implemented in the C
library

Lifetime is managed by
the programmer

Allocation
Deallocation

#include <stdlib.h>

void *malloc(size_t size);

void free(void *ptr);

239 / 398

More Naked Memory Dynamic Memory

Dynamic Memory — Usage

struct point *p = malloc(sizeof(struct point));

do_something_with(p);

...

free(p);

New traps: as always, there is no checking done (as always, this is for
performance reasons)

Memory leak: forget to free() allocated memory

free() a pointer that does not point to dynamically allocated
memory

free() a pointer that has already been deallocated

240 / 398

More Naked Memory Dynamic Memory

Exercises (1)

Singly linked list: public functions (“methos”)

int list_init(struct list *l);

int list_destroy(struct list *l);

int list_insert(

struct list *l,

const char *key, struct point p);

unsigned int list_remove(

struct list *l,

const char *key);

unsigned int list_count(

const struct list *l,

const char *key);

void list_print(

const struct list *l);

241 / 398

More Naked Memory Dynamic Memory

Exercises (2)

Singly linked list: public data structures

#define KEYLEN 31

struct point {

int x;

int y;

};

struct list {

struct node *first;

};

242 / 398

More Naked Memory Dynamic Memory

Exercises (3)

Singly linked list: internals

struct node {

char key[KEYLEN+1];

struct point point;

struct node *next;

};

243 / 398

More Naked Memory Dynamic Memory

Exercises (4)

Implement a linked list as has been sketched above

244 / 398

More Naked Memory Dynamic Memory

Exercises (5)

Empty list

Result of list init()

First element is NULL

struct list {

struct node *first;

};

...

l->first = NULL;

245 / 398

More Naked Memory Dynamic Memory

Exercises (6)

List containing one
element

struct node {

char key[keylen+1];

struct point point;

struct node *next;

};

...

strcpy(n->key, key);

n->point = point;

n->next = NULL;

246 / 398

More Naked Memory Dynamic Memory

Exercises (7)

List containing two elements

247 / 398

More Naked Memory Dynamic Memory

Exercises (8)

Insertion: looking up the position

Where does "B" belong?

248 / 398

More Naked Memory Dynamic Memory

Exercises (9)

Insertion: new struct node

malloc(sizeof(struct node))

Initialization: key, data, next

Where does "B" belong?

249 / 398

More Naked Memory Dynamic Memory

Exercises (10)

Insertion: link new node

Cut old connection

250 / 398

More Naked Memory Dynamic Memory

Exercises (11)

Insertion: done

251 / 398

Advanced Language Features

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

252 / 398

Advanced Language Features Volatile

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

253 / 398

Advanced Language Features Volatile

volatile: The Lie (1)

What volatile does:

Prevents compiler optimization of everything involving the variable
declared volatile

Corollary: the variable must not be kept in a register

volatile int x;

Attention:

All it does is provide a false impression of correctness

Most of its uses are outright bugs

254 / 398

Advanced Language Features Volatile

volatile: The Lie (2)

What volatile doesn’t:
Variable can still be in a cache

Variable is not at all sync with memory when using write-back cache
strategy

Not a memory barrier → load/store reordering still possible (done by
CPU, not by compiler)

→ Not a replacement for proper locking

Still broken: load-modify-store

volatile int use_count;

void use_resource(void)

{

do_something_with_shared_resource();

use_count++;

}

255 / 398

Advanced Language Features Volatile

volatile: Valid Use: Hardware

Originally conceived for use with hardware registers

Optimizing compiler would wreak havoc
Loops would never terminate
Memory locations would not be written to/read from
...

volatile int completion_flag;

volatile int out_word;

volatile int in_word;

int communicate(int word)

{

out_word = word;

while (!completion_flag);

return in_word;

}

256 / 398

Advanced Language Features Volatile

volatile: Valid Use: Unix Signal Handlers

A variable might change in unforeseeable ways

Signal handler modifies quit variable

Optimizing compiler would otherwise make the loop endless

volatile int quit;

int main(void)

{

while (!quit)

do_something();

}

257 / 398

Advanced Language Features Compiler Intrinsics

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

258 / 398

Advanced Language Features Compiler Intrinsics

Atomic Memory Access

Why is this code broken for multithreaded programs?

volatile int use_count;

void use_resource(void)

{

do_something_with_shared_resource();

use_count++;

}

259 / 398

Advanced Language Features Compiler Intrinsics

Atomic Memory Access: Load/Modify/Store

Load-Modify-Store conflict

Classic form of a race condition

BTW: volatile is completely irrelevant!

Thread A Thread B

Instr Loc Instr Loc Glob

load 42 42
42 load 42 42

inc 43 42
43 inc 43 42
43 store 43 43

store 43 43 43

260 / 398

Advanced Language Features Compiler Intrinsics

Load/Modify/Store: Mutex

static pthread_mutex_t use_count_mutex =

PTHREAD_MUTEX_INITIALIZER;

int use_count;

void use_resource(void)

{

do_something_with_shared_resource();

pthread_mutex_lock(&use_count_mutex);

use_count++;

pthread_mutex_unlock(&use_count_mutex);

}

Drawback: mutexes are expensive (→ context switches)

261 / 398

Advanced Language Features Compiler Intrinsics

Atomic Instructions

For simple integers there is a simpler way to atomicity (GCC only)

fetch and add()

int use_count;

void use_resource(void)

{

do_something_with_shared_resource();

__sync_fetch_and_add(&use_count, 1);

}

262 / 398

Advanced Language Features Compiler Intrinsics

More GCC “Builtins”

GCC has a sheer number of builtins ...

Atomic operations

Arithmetic with overflow checking (built-in “functions” with a
“success” return type)

Pointer bounds checking

Visual C++ also has some builtins (“Intrinsics”), but I don’t know these
→ check with MSDN

263 / 398

Advanced Language Features Alignment

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

264 / 398

Advanced Language Features Alignment

Data Alignment

Data alignment: processors like data items of size N (a power of two) to
exist at base addresses that are a multiple of N
→ “Natural alignment”

A character can exist at any address (no alignment restriction)

A 16 bit integer (short on most/all architectures) must align to a 2
byte boundary

Same with 32 bit and 64 bit integers, float and double

Pointers on a 32 bit architecture must align to a 4 byte boundary

Pointers on a 64 bit architecture must align to a 8 byte boundary

265 / 398

Advanced Language Features Alignment

Data Alignment, Compilers

Compilers generally know about a machine’s data sizes and alignment
requirements

Variables are placed at addresses that align them naturally

Not normally a problem during development

Except ...

Mixing 32 bit and 64 bit code (e.g. running a 32 bit executable on a 64
bit OS) → different pointer sizes, at least
Reading and interpreting binary data from somewhere

266 / 398

Advanced Language Features Alignment

Unaligned Data Access (1)

Split in two memory accesses, combined by arithmetic (shift, bitwise
OR)

Architecture dependent

Done in hardware
Trap into OS, emulation in software

Either way: non-negligible performance penalty

→ Play by the rules and just don’t do it

How can I produce an unaligned access?

267 / 398

Advanced Language Features Alignment

Unaligned Data Access (2)

The following code is not clean

Works only because all is done to make unaligned access work

char dog[10];

char *p = &dog[1];

unsigned long l = *(unsigned long *)p;

Future proof (but no faster) ...

char dog[10];

unsigned long l;

memcpy(&l, dog+1, sizeof(unsigned long));

268 / 398

Advanced Language Features Alignment

Padding (1)

What happens to structure members?

No standalone variables which are freely allocated by the compiler

Compiler is forbidden (per C/C++ standard) to rearrange members
of a struct

struct animals {

char dog; /* 1 byte */

unsigned long cat; /* 8 bytes */

unsigned short pig; /* 2 bytes */

char fox; /* 1 byte */

};

How large would this be? 1+8+2+1 == 12?

269 / 398

Advanced Language Features Alignment

Padding (2)

struct animals {

char dog; /* 1 byte */

unsigned long cat; /* 8 bytes */

unsigned short pig; /* 2 bytes */

char fox; /* 1 byte */

};

Quite naive structure layout: no compiler does this!

Can be enforced by compiler specific structure attributes (GCC) or
pragmas (Doze) → Bogus!

270 / 398

Advanced Language Features Alignment

Padding (3)

Compiler inserts padding

Preserves order of members (dictated by law)

Artificially guarantees aligned access

struct animals {

char dog; /* 1 byte */

char __pad0[7]; /* 7 bytes */

unsigned long cat; /* 8 bytes */

unsigned short pig; /* 2 bytes */

char fox; /* 1 byte */

char __pad1[5]; /* 5 bytes (?) */

};

271 / 398

Advanced Language Features Alignment

Padding (4)

Bloat in size

→ Rearrange members manually, ordered by decreasing
size/alignment

struct animals {

unsigned long cat; /* 8 bytes */

unsigned short pig; /* 2 bytes */

char dog; /* 1 byte */

char fox; /* 1 byte */

};

272 / 398

Advanced Language Features Alignment

Structure Alignment (1)

What is the alignment of a structure?

Padding is applied inside a structure, to meet alignment requirements
of all members

On what addresses can a structure exist, then?

=⇒ On all addresses where the member with the largest alignment
can exist

Rule: The alignment of a structure is the alignment of the largest
included type.

Corollary: The alignment of a union is the alignment of the largest
included type

273 / 398

Advanced Language Features Alignment

Structure Alignment (2)

Remember?

Largest member is cat, 8 bytes =⇒ structure’s alignment is 8

If we place the entire structure at address 8, cat is at 16 — which
aligns it correctly

So, remember:

The alignment of a structure is the alignment of the largest
included type.

The alignment of a union is the alignment of the largest
included type.

274 / 398

Advanced Language Features Alignment

And Arrays? (1)

Correctly Aligned

There is a padding of 5 bytes at the end of the structure

If we omit it, the alignment is not changed — only the structure
becomes smaller in size (19 bytes, which is not only odd but prime)

Bogus, no padding at end

275 / 398

Advanced Language Features Alignment

And Arrays? (2)

Prime-Aligned Structure

This structure is clearly not suited for arrays

Nearly all members of the second array element would be misaligned

Would it suffice to end-pad the structure so its entire size is a
multiple of 4?

276 / 398

Advanced Language Features Alignment

And Arrays? (3)

Would it suffice to end-pad the structure so its entire size is a
multiple of 4 (and not 8)?

→ No: the cat member of the second array element would then be
misaligned

So, remember:

The size of a structure is a multiple of the alignment of the
largest included type.

The alignment of an array is the alignment of its base type.

277 / 398

Program Sanity

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

278 / 398

Program Sanity Sanity and Readabilty

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

279 / 398

Program Sanity Sanity and Readabilty

Shooting Offense: Unobvious Solution

280 / 398

Program Sanity Sanity and Readabilty

Shooting Offense: Unobvious Problem

281 / 398

Program Sanity Sanity and Readabilty

Shooting Offenses

We are all mature programmers, and we all know that some oddities
are best rectified by firing the programmer

Unexpected side effects

Wrong documentation (none is far better)

Nested loops to a depth of 10

With loop variables taken from somewhere in the middle of the
alphabet (Fortran?)

Obvious lazyness

Obvious lack of respect for colleagues

282 / 398

Program Sanity Sanity and Readabilty

Ambiguity

Ambiguity is the root of all evil. Imagine ...

1 You have to take over maintenance of a large piece of code

2 → you have to understand it

3 You cannot guess from its name what a function does

4 Same with variables

5 Same with parameters

6 Return values have no obvious meaning

7 There are comments all over, obviously meant to overcome those
shortcomings

8 Comments are mostly out-of-sync with the code

→ This will drive you mad!
(... especially if it’s your own code)

283 / 398

Program Sanity Sanity and Readabilty

Readability

Simple recipe for writing good code: you are able to understand what
you did, even after three weeks of holiday/beer

Chances are others will understand the code too

Requires some discipline

→ Handcraft?

284 / 398

Program Sanity Sanity and Readabilty

Code Smells

Code smells for the following reasons

Comments that explain how the code works

Long parameter lists

Long nested if/else chains

Hungarian notation

... and many more

We won’t elaborate on that — this is not a programming course
Following a series of easy techniques to make C code readable/correct

285 / 398

Program Sanity Know Your Integers

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

286 / 398

Program Sanity Know Your Integers

Standard Data Types: size t (1)

Sizes are everywhere

Number of bytes in an allocated chunk of memory

Number of elements in an array

Number of microseconds until timer runs off

Result of the strlen() function

Result of the sizeof operator

This is what size t is there for:

Nobody has to worry about signedness (sizes simply don’t become
negative)

→ adds clarity

#include <unistd.h>

287 / 398

Program Sanity Know Your Integers

Standard Data Types: size t (2)

Consequences

None (except for readability)

(GCC) -Wsign-compare, -Wtype-limits, ...

lots of warnings when mixing
consider -Wextra

→ Correctness (up to a certain extent)

Find at least two Bugs!

size_t sum(int set[], size_t size)

{

size_t sum = 0;

while (size-- >= 0)

sum += set[size];

return sum;

}

288 / 398

Program Sanity Discrete Values — enum

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

289 / 398

Program Sanity Discrete Values — enum

Discrete Values

Many times an integer’s value does not take the full possible range →
Discrete values

Command identifiers (e.g. Unix ioctl’s)

Possible baud rates on a UART

A state machine’s state

290 / 398

Program Sanity Discrete Values — enum

Discrete Values — Traditional Approach (1)

#define IDLE 0

#define WRITING_REQUEST 1

#define READING_RESPONSE 2

#define WAIT_RETRY 3

struct protocol_engine

{

int state;

...

};

Traditional approach

Declare a set of symbolic
macros

Let an integer carry one
of these values

Drawback

One cannot deduce valid
values from looking at
the type

291 / 398

Program Sanity Discrete Values — enum

Discrete Values — Traditional Approach (2)

switch (engine->state) {

case IDLE: ...;

case WRITING_REQUEST: ...;

case READING_RESPONSE: ...;

case WAIT_RETRY: ...;

default:

error("bad state");

break;

}

switch is the statement
for discrete values

As everybody knows:
default is obligatory

Questions

Bad state? Why? How
can this happen?

The switch handles
every possible value
anyhow

... so why have a
default?

292 / 398

Program Sanity Discrete Values — enum

Discrete Values — Wishlist

Wishlist:

1 The value of a state is pointless. I don’t want to think about it. I.e.,
WRITING REQUEST == 1 for no reason.

2 Separate type for a state, for

Readability
Type safety (to prevent mixing with e.g. integers)

3 Compiler support in switch like, “forgot to add case label for newly
introduced state”.

→ Fully met in C++, only partly met (“Type safety”) in C

293 / 398

Program Sanity Discrete Values — enum

Discrete Values — enum

enum state

{

IDLE,

WRITING_REQUEST,

READING_RESPONSE,

WAIT_RETRY

};

struct protocol_engine

{

enum state state;

...

};

Advantage:

Wishlist item #1 and #2

Separate type

Unambiguous when reading the
code

But:

The following is legal in C

Illegal in C++

enum state s = 42;

294 / 398

Program Sanity Discrete Values — enum

Discrete Values — enum and switch

Wishlist item #3: “forgot to add case label for newly introduced state”

Adding New State

enum state

{

IDLE,

WRITING_REQUEST,

READING_RESPONSE,

WAIT_RETRY,

/* Error handling */

PROTOCOL_ERROR

};

State machines change

E.g. towards the end of
the project everybody
wants error handling

→ Code needs to react
upon the new state

295 / 398

Program Sanity Discrete Values — enum

Discrete Values — enum and switch

switch (engine->state) {

case IDLE: ...;

case WRITING_REQUEST: ...;

case READING_RESPONSE: ...;

case WAIT_RETRY: ...;

default:

error("bad state");

break;

}

“default:” considered
harmful

Eats all new states

→ prevents the compiler
from helping me

296 / 398

Program Sanity Discrete Values — enum

Discrete Values — Close to Perfection

switch (engine->state) {

case IDLE: ...;

case WRITING_REQUEST: ...;

case READING_RESPONSE: ...;

case WAIT_RETRY: ...;

/* no default here! */

}

GCC (at least) can warn
about such cases

-Wswitch-enum

$ gcc -Wswitch-enum ...

warning: enumeration value ‘PROTOCOL_ERROR’ not handled ...

$ gcc -Werror -Wswitch-enum ...

error: enumeration value ‘PROTOCOL_ERROR’ not handled ...

297 / 398

Program Sanity Visibility — static

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

298 / 398

Program Sanity Visibility — static

Visibility

Compilation unit: the entity seen by one compiler call

The C file that is being compiled

All included header files

Result is usually one object file

Symbol resolution:

By compiler inside one compilation unit

By linker across multiple compilation units

Among symbols that the linker sees

299 / 398

Program Sanity Visibility — static

A Somewhat Contrived Example (1)

Two compilation units linked into an executable ...

main.c

#include <stdio.h>

extern float avg(

int *begin, int *end);

int main(void)

{

int array[] =

{ 1, 2, 3, 4, 5 };

printf("%f\n",

avg(array, array+3));

return 0;

}

avg.c

int sum(int *begin, int *end)

{

int sum = 0;

while (begin < end)

sum += *begin++;

return sum;

}

float avg(int *begin, int *end)

{

return

(float)sum(begin, end) /

(end-begin);

}
300 / 398

Program Sanity Visibility — static

A Somewhat Contrived Example (2)

Function sum() in avg.c is globally visible

Anybody could declare it and use it

Linker will resolve it (that’s his job)

Name could clash with another symbol in another compilation unit

Linker error (“duplicate symbol”) when linking statically
Subtle bug when using shared libraries

Innocent reader has to think twice

“Can I modify the function without telling anybody?”

→ Ambiguity that needs resolution!

301 / 398

Program Sanity Visibility — static

The static Keyword (Hooray!)

Solution: static — restrict visibility to the compilation unit

avg.c

static int sum(

int *begin, int *end)

{

int sum = 0;

while (begin < end)

sum += *begin++;

return sum;

}

Nobody has to think twice

Nobody can use sum but the file
it is defined in

No name clashes

No ambiguity!

Only readability!

Compiler can automatically
inline the function

... with only 6 characters of
effort

302 / 398

Program Sanity Correctness — const

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

303 / 398

Program Sanity Correctness — const

Non-Modifiable Memory (1)

Did you know the difference?

void f(void)

{

char str[] = "blah";

str[0] = ’x’;

}

void f(void)

{

char *str = "blah";

str[0] = ’x’;

}

304 / 398

Program Sanity Correctness — const

Non-Modifiable Memory (2)

char str[] = "blah";

Array initialization

Allocated on the
stack, at runtime

→ writable

char *str = "blah";

Allocated in read-only memory, at
compilation time

Pointer setup at runtime, to point
there

→ not writable

305 / 398

Program Sanity Correctness — const

The const Keyword (1)

So there is already the concept of read-only data ...

Sadly compilers generally issue no warnings

(On Linux) Not an error, only on-demand duplication of a shared
read-only memory page

→ expensive

Unintended in most cases

$ gcc -Wwrite-strings ...

warning: initialization discards ‘const’ qualifier from

pointer target type

A-ha: “const” qualifier!

306 / 398

Program Sanity Correctness — const

The const Keyword (2)

warning: initialization discards ‘const’ qualifier from

pointer target type

char *str = "blah";

Obviously (no surprise) the compiler knows that "blah" is in
read-only memory

→ String literals are const char *

const char *str = "blah";

Consequences:

str cannot be written to

→ Code has to be fixed until compiler is happy

→ Correctness with minimal effort

307 / 398

Program Sanity Correctness — const

const Variables

Getting rid of the preprocessor (good idea) ...

const int MAX_BUCKETS = 64;

... is the same, compiler-wise, as ...

#define MAX_BUCKETS 64

Additional benefits ...

MAX BUCKETS has a type

Not a stupid string substitution, but a regular C identifier

“unused” warnings

308 / 398

Program Sanity Correctness — const

const Parameters (1)

int sum(int *begin, int *end);

Reading this declaration, we assume the following:

It builds a sum

It returns the result

It operates on a range [begin, end)

It does not modify the input data

Ambiguity alert:

We can say nothing of the above for sure

... but we can help with the last item

309 / 398

Program Sanity Correctness — const

const Parameters (2)

int sum(const int *begin, const int *end);

Now we can say one thing for sure:

It does not modify the input data

Consequences:

sum() has to modified

Not a big deal when only a few lines involved

Can be a problem when code is large and complex

→ “const pollution”

310 / 398

Program Sanity Correctness — const

Pointers, Pointers, Pointers ... (1)

What’s known so far:

const can be applied to scalar types

const can be applied to struct types (we don’t know this, but it’s a
logical consequence)

const, applied to pointers, keeps me from modifying what they point
to

const int i;

int const j; /* same! */

const int *pi = &i;

int const *pj = &j;

311 / 398

Program Sanity Correctness — const

Pointers, Pointers, Pointers ... (2)

Mixing ...

int const i = 42;

int *pi = &i;

warning: initialization discards ‘const’ qualifier

from pointer target type

pi does not promise to not modify the value it points to

Pointee is read-only

Sadly this can only be a warning for historical reasons

312 / 398

Program Sanity Correctness — const

Pointers, Pointers, Pointers ... (3)

So, given that ...

int const i;

... is a read-only variable, ...

int * const pi;

... is a read-only variable:

A pointer that cannot be modified

But can be used to modify what it points to (it’s an int, not an int

const)

313 / 398

Program Sanity Correctness — const

Pointers, Pointers, Pointers ... (4)

int * const pi;

/* error: assignment of read-only variable ‘pi’ */

pi = NULL;

/* ok, compiles */

*pi = 42;

But is this correct?

314 / 398

Program Sanity Correctness — const

Pointers, Pointers, Pointers ... (5)

So what’s this?

int i = 42

int const * const pi = &i;

/* error: assignment of read-only variable ‘pi’ */

pi = NULL;

/* error: assignment of read-only location ‘*pi’ */

*pi = 42;

315 / 398

Program Sanity Correctness — const

Pointers, Pointers, Pointers ... (6)

How about pointers that point to pointers?

int i = 42;

int *pi = &i;

int **ppi = π

**ppi = 7;

*ppi = NULL;

316 / 398

Program Sanity Correctness — const

Pointers, Pointers, Pointers ... (7)

How about pointers that point to pointers that point to const?
(Gosh)

int const i = 42;

int const *pi = &i;

int const **ppi = π

ppi = NULL;

*ppi = NULL;

/* error: assignment of read-only location ‘**ppi’ */

**ppi = 7;

317 / 398

Program Sanity Correctness — const

Pointers, Pointers, Pointers ... (8)

How about pointers that point to non-modifiable pointers that
point to const?

int const i = 42;

int const * const pi = &i;

int const * const *ppi = π

ppi = NULL;

/* error: assignment of read-only location ‘*ppi’ */

*ppi = NULL;

/* error: assignment of read-only location ‘**ppi’ */

**ppi = 7;

318 / 398

Program Sanity Correctness — const

Pointers, Pointers, Pointers ... (9)

How about ...? (To be continued)

319 / 398

Program Sanity Struct Initialization

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

320 / 398

Program Sanity Struct Initialization

Good Old Struct Initialization

struct person

{

char fn[16];

char ln[16];

int age;

int height;

};

struct person me = { "Joerg", "Faschingbauer", 50, 172 };

As always: Ambiguity

One can only guess as to what the initializer means

Imagine somebody’s name is “Beman Dawes”
age? height? Or is it weight?

Have to lookup the definition of struct person

321 / 398

Program Sanity Struct Initialization

C99 “Designated Initializer”

struct person me = {

.fn = "Joerg",

.ln = "Faschingbauer",

.age = 50,

.height = 172

};

Consequences:

A couple more characters of typing

Safety: when member names (semantics?) change, the compiler
forces checking

Clarity

322 / 398

Program Sanity Explict Type Safety

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

323 / 398

Program Sanity Explict Type Safety

Integer Types Are Ambiguous

Using integers as parameters and return types obfuscates code

Conversions happen automatically, without any notice by the compiler

Worse: their semantics is not always clear

size t helps to a certain extent

Even more worse:

Mixing integers with different semantics
Changing semantics → no help by compiler

Example: error handling ...

324 / 398

Program Sanity Explict Type Safety

Example: Ambiguous Error Schemes (1)

Returns a “signed size type”: negative on error, size written
otherwise (Unix tradition: waste half of the domain for an occasional -1):

ssize_t send_frame(

struct protocol_engine *eng,

const struct frame *f);

Always returns a valid sum:

int sum(const int *begin, const int *end);

325 / 398

Program Sanity Explict Type Safety

Example: Ambiguous Error Schemes (2)

Automatic Conversion Massacre

unsigned int send_sum(

struct protocol_engine *engine,

const int *begin, const int *end)

{

struct frame f;

int retval = sum(begin, end);

f.type = INT32;

f.v_int32 = retval;

retval = send_frame(engine, &f);

return retval;

}

326 / 398

Program Sanity Explict Type Safety

Example: Ambiguous Error Schemes (3)

What are we trying to accomplish?

int sum(): ok; sum of integers is an integer

Should think of overflow (gosh)

ssize t send frame(): ok, but uses weird Unix style error
reporting.

unsigned int send sum(): combines these in a spectacular way,
and returns an application defined error number (0 for ok).

Imagine for a moment that there is one programmer who is able to code
such crap ...

Compiler happily converts between all these different integer types

→ Hell will break loose sooner or later

327 / 398

Program Sanity Explict Type Safety

Artificial Integer Type safety

Passing struct By-Value

struct point

{

int x, y;

};

struct point addpoints(struct point lhs, struct point rhs);

struct assignment only possible on equally typed values

Mixing impossible

Why not wrap our integer error codes in structs of adequate type?

328 / 398

Program Sanity Explict Type Safety

Error Schemes, Revisited

What was our problem?

Unix system calls have that weird “-1 on failure, examine global
errno variable if so” scheme

Valid errno errors are always >0

Application-defined unsigned int errors otherwise

Mixing is prevented only by coding very carefully

Proposed solution: two dedicated error types ...

struct unix error, encapsulating a Unix error

struct app error, encapsulating the application’s own error values

329 / 398

Program Sanity Explict Type Safety

Error Schemes: Encapsulating Unix Details

Sketch: Definition of unix error

struct unix_error

{

int errno;

};

static inline struct unix_error unix_error_create(int errno)

{

struct unix_error e;

e.errno = errno;

return e;

}

static inline int unix_error_ok(struct unix_error e)

{

return e.errno == 0;

}

330 / 398

Program Sanity Explict Type Safety

Error Schemes: Using Encapsulated Stuff

Sketch: Usage of Type Safe Errors

struct app_error send_sum(

struct protocol_engine *engine,

const int *begin, const int *end)

{

struct unix_error uerr;

...

uerr = send_frame(engine, &f);

if (!unix_error_ok(uerr))

return app_error_create(APP_OS_ERROR);

...

}

331 / 398

Program Sanity Explict Type Safety

Wrap-Up: Artificial Type Safety

Good news:

It is possible to write entirely type safe code in C

Using the right measures (inlining, small structs), no performance
impact

Greatly enhances maintainability

Bad news:

A lot of explicit typing

C++ can do the same with overloading and much less typing

332 / 398

Program Sanity valgrind

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

333 / 398

Program Sanity valgrind

Valgrind

Valgrind: debugging at its best (because it is so simple)

Main target: memory errors

Writing and reading beyond array bounds

Usage of uninitialized memory

Double free/delete

Memory leaks

Drawback: considerable execution slowdown →
Race conditions not easily debugged

Multithreading is hard generally

Larger programs are not easily emulated → smaller test suites that
are regularly checked with valgrind

334 / 398

Program Sanity valgrind

Valgrind in Action (1)

There are bugs that cannot be found because they

almost never occur

almost never are visible

Cannot be reproduced in tests programs

...

Find the Bug!

#include <stdlib.h>

void main(void)

{

char *bug = malloc(64);

bug[64] = ’\0’;

}

335 / 398

Program Sanity valgrind

Valgrind in Action (2)

valgrind at Bug Search

$ valgrind ./a.out

...

Invalid write of size 1

at 0x400552: main (array-bounds-write.c:5)

Address 0x51bb072 is 0 bytes after a block of size 50

at 0x4C28C6D: malloc (vg_replace_malloc.c:236)

by 0x400545: main (array-bounds-write.c:4)

...

336 / 398

Program Sanity valgrind

Valgrind in Action (3)

Memory leak

$ valgrind --leak-check=full ./a.out

...

50 bytes in 1 blocks are definitely lost in loss rec..

at 0x4C28C6D: malloc (vg_replace_malloc.c:236)

by 0x400545: main (array-bounds-write.c:4)

...

→ very helpful!

337 / 398

Program Sanity valgrind

Valgrind: more ...

Uncovers many more types of errors:

Usage of uninitialized variables

Deallocation errors (free/delete/delete[])

Erroneous system call usage

...

More information:

valgrind.org

man valgrind (as always)

338 / 398

Performance

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

339 / 398

Performance Optimization

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

340 / 398

Performance Optimization

Optimization — Introduction

General Rules ...

Focus on clean design → efficiency follows

Optimization near the end of the project

Proven hotspots need optimization

Proof through profiling

“Premature optimization is the root of all evil”
Donald E. Knuth

341 / 398

Performance Optimization

Compute Bound or IO Bound? (1)

Decide whether, what and how to optimize!

Collect representative input data

Why does the program take long?

Where does it spend most of its time?

Userspace: this is where computation is generally done
Kernel: ideally very little computation

342 / 398

Performance Optimization

Compute Bound or IO Bound? (2)

Checksumming From An Externel USB Disk

$ time sha1sum 8G-dev.img.xz > /dev/null

real 0m38.879s

user 0m3.349s

sys 0m0.375s

real: total perceived run time (“wall clock time”)

user: total CPU time spent in userspace

sys: total CPU time spent in kernel

Here: user + sys is far less than real → mostly IO

343 / 398

Performance Optimization

Compute Bound or IO Bound? (3)

Checksumming From Internal SSD

$ time sha1sum 01\ -\ Dazed\ and\ Confused.mp3 1>/dev/null

real 0m0.128s

user 0m0.107s

sys 0m0.018s

Here: user + sys is roughly equal to real

Almost no IO

→ Compute bound

344 / 398

Performance Optimization

What to do Next?

Now that we know that our application is compute bound ...

See where it spends most of its time → profiling

Decide whether optimization would pay off

Understand what can be done

Understand optimizations that compilers generally perform

345 / 398

Performance Compute Bound Code

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

346 / 398

Performance Compute Bound Code

Many Ways of Optimization

There are many ways to try to optimize code ...

Unnecessary ones

Using better algorithms (e.g. sorting and binary search)

Function call elimination (inlining vs. spaghetti)

Loop unrolling

Strength reduction (e.g. using shift instead of mult/div)

Tail call elimination

...

347 / 398

Performance Compute Bound Code

Unnecessary Optimizations

if (x != 0)

x = 0;

The rumour goes that this is not faster than unconditional writing

Produces more instructions, at least

348 / 398

Performance Compute Bound Code

Inlining (1)

Facts up front:

Function calls are generally fast

A little slower when definition is in a shared library

Instruction cache, if used judiciously, makes repeated calls even faster

But, as always: it depends

Possible inlining candidate

int add(int l, int r)

{

return l + r;

}

349 / 398

Performance Compute Bound Code

Inlining (2)

A couple rules

Always write clear code

Never not define a function because of performance reason

Readability first
Can always inline later, during optimization

Don’t inline large functions → instruction cache pollution when called
from different locations

Use static for implementation specific functions → compiler has
much more freedom

350 / 398

Performance Compute Bound Code

Inlining (3)

GCC ...

Does not optimize by default

Ignores explicit inline when not optimizing

-finline-small-functions (enabled at -O2): inline when function
call overhead is larger than body (even when not declared inline)

-finline-functions (enabled at -O3): all functions considered for
inlining → heuristics

-finline-functions-called-once (enabled at -O1, -O2, -O3,

-Os): all static functions that ...

More → info gcc

351 / 398

Performance Compute Bound Code

Register Allocation (1)

Register access is orders of magnitude faster than main memory
access

→ Best to keep variables in registers rather than memory

CPUs have varying numbers of registers

register keyword should not be overused
Ignored anyway by most compilers

Register allocation

Compiler performs flow analysis
Live vs. dead variables
“Spills” registers when allocation changes

Compiler generally makes better choices than the programmer!

352 / 398

Performance Compute Bound Code

Register Allocation (2)

GCC ...

-fira-* (for Integrated Register Allocator)

RTFM please

A lot of tuning opportunities for those who care

353 / 398

Performance Compute Bound Code

Peephole Optimization

Peephole: manageable set of instructions; “window”

Common term for a group of optimizations that operate on a small
scale

Common subexpression elimination
Strength reduction
Constant folding

Small scale → “basic block”

354 / 398

Performance Compute Bound Code

Peephole Optimization: Common Subexpression
Elimination

Sometimes one writes redundant code, in order to not compromise
readability by introducing yet another variable ...

a = b + c + d;

x = b + c + y;

This can be transformed to

tmp = b + c; /* common subexpression */

a = tmp + d;

x = tmp + y;

355 / 398

Performance Compute Bound Code

Peephole Optimization: Strength Reduction

Most programmers prefer to say what they mean (fortunately) ...

x = y * 2;

The same effect, but cheaper, is brought about by ...

x = y << 1;

If one knows the “strength” of the operators involved (compilers tend to
know), then even this transformation can be opportune ...

x = y * 3; /* y*(4-1) == y*4-y */

x = (y << 2) - y;

356 / 398

Performance Compute Bound Code

Peephole Optimization: Constant Folding

Another one that might look stupid but readable ...

x = 42;

y = x + 1;

... is likely to be transformed into ...

x = 42;

y = 43;

Consider transitive and repeated folding and propagation → pretty results

357 / 398

Performance Compute Bound Code

Loop Invariants

The following bogus code ...

while (1) {

x = 42; /* loop invariant */

y += 2;

}

... will likely end up as ...

x = 42;

while (1)

y += 2;

At least with a minimal amount of optimization enabled (GCC:
-fmove-loop-invariants, enabled with -O1 already)

358 / 398

Performance Compute Bound Code

Loop Unrolling

If a loop body is run a known number of times, the loop counter can be
omitted.

for (i=0; i<4; i++)

dst[i] = src[i];

This can be written as

dst[0] = src[0];

dst[1] = src[1];

dst[2] = src[2];

dst[3] = src[3];

Complicated heuristics: does the performance gain outweigh
instruction cache thrashing?

→ I’d keep my fingers from it!

359 / 398

Performance Compute Bound Code

Tail Call Optimization

int f(int i)

{

do_something(i);

return g(i+1);

}

g() is called at the end

f()’s stack frame is not used afterwards

Optimization: g() can use f()’s stack frame

360 / 398

Performance Compute Bound Code

CPU Optimization, Last Words

Once more: Write clean Code!

All optimization techniques explained are performed automatically, by
the compiler

Theory behind optimization is well understood → engineering
discipline

Compilers generally perform optimizations better than a programmer
would

... let alone portably, on different CPUs!

“Optimization” is a misnomer → “Improvement”

Compiler cannot make arbitrary code “optimal”
Bigger picture is always up to the programmer
→ Once more: Write clean Code!

Work together with compiler → use static, const

361 / 398

Performance Compute Bound Code

GCC: Optimization “Levels”

-O0: optimization off; the default

-O1: most basic optimizations; does as much as possible without
compromising compilation time too much

-O2: recommended; does everything which has no size impact, is
unagressive, and doesn’t completely chew compilation time

-O3: highest level possible; somewhat agressive, can break things
sometimes, eats up your CPU and memory while compiling

-Os: optimize for size; all of -O2 that doesn’t increase size

-Og (since GCC 4.8): “developer mode”; turns on options that don’t
interfere with debugging or compilation time

362 / 398

Performance Memory Optimizations

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

363 / 398

Performance Memory Optimizations

Memory: Caches

Access to main memory is slow

CPU memory cache to speed access up by magnitudes

Organized in cache lines (˜512 bytes each)

Cache hierarchies

364 / 398

Performance Memory Optimizations

Locality of reference

Rules to keep caches hot

Group data together, so that nearby data is in the same cache line

Use contiguous memory where possible; for example

Aggregation of structures
Sequential access in large (multidimensional?) arrays
Sorted arrays rather than fragmented tree structures

Take care that data does not bounce back and forth between cache
and main memory (“cache thrashing”)

→ Locality of reference

365 / 398

Performance Memory Optimizations

Multidimensional Arrays

C Array Definition

int array[4/*rows*/][3/*columns*/];

4x3 Matrix

Conceptually, a
rectangular matrix

Memory layout

Physically, a linear array

366 / 398

Performance Memory Optimizations

Multidimensional Arrays: Cache Thrashing

Traversing the matrix columns-first is correct

... but not efficient

for (j=0; j<rows; j++)

for (i=0; i<columns; i++)

access(array[i][j]);

367 / 398

Performance Memory Optimizations

Multidimensional Arrays: Forward Indexing

Always traverse array row-first

“Forward indexing”

Best Locality of reference

for (i=0; i<rows; i++)

for (j=0; j<columns; j++)

access(array[i][j]);

368 / 398

Profiling

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

369 / 398

Profiling Intro

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

370 / 398

Profiling Intro

Profiling — Famous Words

“Premature optimization is the root of all evil”
Donald E. Knuth

“Premature optimization is the root of all evil”
Tony Hoare

“Optimizations always bust things, because all optimizations are, in the
long haul, a form of cheating, and cheaters eventually get caught.”
Larry Wall

“Measurement is a crucial component of performance improvement since
reasoning and intuition are fallible guides and must be supplemented with
tools like timing commands and profilers.”
The Practice of Programming, Brian W. Kernighan and Rob Pike

371 / 398

Profiling Intro

Profiling — Introduction

General Rules ...

Focus on clean design → efficiency follows

Optimization near the end of the project

Proven hotspots need optimization

Proof through profiling

How? On Linux ...

gprof: compile time code instrumentation, single program

valgrind --tool=callgrind: emulation

oprofile: no instrumentation, global system view

372 / 398

Profiling GNU Profiler — gprof

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

373 / 398

Profiling GNU Profiler — gprof

gprof — How it Works

How does it work?

Compiler inserts hooks into each function → counts number of calls

Signal handler runs periodically to gather statistic information about
each call

Compiler and Linker Calls

$ gcc -pg -c -o program.o program.c

$ gcc -pg -g -c -o program.o program.c # debug info

$ gcc -pg -o program program.o

Running program creates a file gmon.out in the current working
directory

Interpreted by gprof

374 / 398

Profiling GNU Profiler — gprof

Using gprof

Basic Usage

$ gprof program gmon.out

...

Prints plenty of information

Flat profile: (sorted) list of functions and their numbers. Good to
initially find out about the hot spots.

Call graph: node-by-node listing of call graph

Explanations of both (suppress with --brief)

375 / 398

Profiling GNU Profiler — gprof

gprof: Flat Profile

$ gprof --brief --flat-profile program gmon.out

% cumulative self self total

time seconds seconds calls us/call us/call name

89.96 1.02 1.02 38000000 0.03 0.03 contains

9.80 1.13 0.11 1000000 0.11 1.10 find_duplicates

% time: percentage of entire runtime, including called subroutines

cumulative seconds: same in seconds

self seconds: time consumed by the function alone. The most
valuable information → primary sorting criterion

calls: total number of calls

376 / 398

Profiling GNU Profiler — gprof

gprof: Call Graph

$ gprof --brief --graph program gmon.out

index % time self children called name

...

0.11 0.99 1000000/1000000 main [1]

[2] 97.6 0.11 0.99 1000000 find_duplicates [2]

0.99 0.00 37000000/38000000 contains [3]

...

The index line is the center (what the node is about)

Lines above: callers

Lines below: callees

3/291: 291 total calls, 3 attributed to one particular caller

377 / 398

Profiling GNU Profiler — gprof

gprof: Interpreting The Results

1 Identify hot spots

Flat profile gives the hot spots → self seconds is the primary
criterion
Scripting always possible if more is wanted

2 Call graph starting at the hot spots

$ gprof --brief --graph -f contains program gmon.out

...

index % time self children called name

0.00 0.00 1000000/38000000 main (6)

0.00 0.00 37000000/38000000 find_duplicates (2)

[1] 0.0 0.00 0.00 38000000 contains [1]

...

378 / 398

Profiling GNU Profiler — gprof

gprof: Visualization

One wishes that can be
visualized

We have no such luck

$ gprof program gmon.out | \

gprof2dot | \

dot -Tjpeg | \

display -

379 / 398

Profiling callgrind

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

380 / 398

Profiling callgrind

callgrind — How it Works

How does it work?

valgrind: run-time code instrumentation

callgrind is a “tool” using valgrind infrastructure

Call-graph analysis, optional cache and branch-prediction analysis

Compared to good old gprof ...

Sluggishly slow (the price of run-time instrumentation)

More accurate

Nice graphical tool → kcachegrind

381 / 398

Profiling callgrind

callgrind — How it is Used

Compiler and Linker Calls

$ gcc -c -o program.o program.c

$ gcc -g -c -o program.o program.c # debug info

$ gcc -o program program.o

No compiler attention needed

Debug information only for source annotation (→ kcachegrind)

Producing Output: callgrind.out.<pid>

$ valgrind --tool=callgrind ./program

...

$ ls callgrind.out.*

callgrind.out.16761

382 / 398

Profiling callgrind

callgrind — Analysis Per Commandline

Basically records the same information as gprof

Flat profile

Call Graph

All sorts of counters (can detect cache misses etc.)

Most basic analysis tool: callgrind annotate

$ callgrind_annotate callgrind.out.16761

... unreadable but informative garbage ...

383 / 398

Profiling callgrind

callgrind — Analysis With kcachegrind

384 / 398

Profiling callgrind

callgrind — Useful Options

Instrumented code takes very long

Start without instrumentation

Switch on explicitly during runtime (by PID)

Start Without Instrumentation

$ valgrind --tool=callgrind --instr-atstart=no ./program

Switch on Instrumentation

$ callgrind_control --instr=on 16761

385 / 398

Profiling oprofile

Overview

1 Introduction
Introduction
Hello World

Variables and
Arithmetic
for Loops
Symbolic Constants
Character I/O
Arrays
Functions
Character Arrays
Lifetime of Variables

2 Types, Operators,
Expressions

Variable Names
Data Types, Sizes
Constants
Variable Definitions
Arithmetic Operators
Relational and Logical
Operators

Type Conversions
Increment, Decrement
Bit-Operators
Assignment with
Calculation
?: — Conditional
Expression
Precedence,
Associativity

3 Program Flow
Statements and Blocks
if — else

else — if

switch

Loops: while and for

Loops: do - while

break and continue

goto and Labels
4 Functions and Program

Structure
Basics

Extern/Global Variables
Header Files
Static Variablen
C Preprocessor: Basics
C Preprocessor: More

5 Pointers and Arrays
Pointers and Arrays
Pointers as Function
Parameters
Pointers and Arrays
Commandline

6 Structures
Basics
struct, Functions
typedef: Type Alias

7 More Naked Memory
Dynamic Memory

8 Advanced Language
Features

Volatile
Compiler Intrinsics

Alignment

9 Program Sanity
Sanity and Readabilty
Know Your Integers
Discrete Values — enum

Visibility — static

Correctness — const

Struct Initialization
Explict Type Safety
valgrind

10 Performance
Optimization
Compute Bound Code
Memory Optimizations

11 Profiling
Intro
GNU Profiler — gprof

callgrind

oprofile

386 / 398

Profiling oprofile

oprofile — How it Works

How does it work?

Hardware based: CPUs have performance counters/events

NMI, trapped by Linux kernel

Samples sent to userspace

Compared to other tools ...

Hardware → low overhead

1-3% they say

Support for wide variety of performance events

Cache miss
Branch prediction failure
Lots of others I don’t understand (→ ophelp)

Just works!

387 / 398

Profiling oprofile

oprofile — Basic Usage (1)

Profiling a single executable

$ operf ./program

Creates output directory oprofile data

Used by reporting tools

opreport

opannotate

oparchive

opgprof

388 / 398

Profiling oprofile

oprofile — Basic Usage (2)

Report Everything

$ opreport

... long list of processes, library and kernel symbols ...

Report Symbols and Their Counters

$ opreport --symbols

Take Debug Information Into Account

$ opreport --debug-info

389 / 398

Profiling oprofile

oprofile — Too Much Information

oprofile takes samples no matter what

→ too much information

Used shared libraries
Kernel

Exclude Shared Libraries and Kernel → gprof Flat Profile

$ opreport --symbols --exclude-dependent

...

samples % symbol name

2828 88.5410 contains

358 11.2085 find_duplicates

8 0.2505 main

390 / 398

Profiling oprofile

oprofile — Call Graph

oprofile collects samples in non-maskable interrupt

→ time critical

does not (by default) record caller information with every sample

Have operf Record Caller On Every Sample

$ operf --callgraph ./program

Report Callers and Callees

$ opreport --callgraph

... no easy reading here ...

391 / 398

Profiling oprofile

oprofile — Kernel Symbols (1)

Symbols come from files → file mappings

Executables

Shared libraries

Kernel modules

Kernel itself is not a file!

Bootloader loads kernel image into memory

Kernel not necessarily contained in the file system

→ Flash memory, network (PXE boot), ...

$ operf ./program

$ opreport --symbols

...

8 0.4630 no-vmlinux /no-vmlinux

...

392 / 398

Profiling oprofile

oprofile — Kernel Symbols (2)

operf needs some help ...

Helping operf With Kernel Samples

$ operf --vmlinux=/root/linux-3.16.5-gentoo/vmlinux ./program

vmlinux is not usually an artifact of the kernel build process

→ make vmlinux

Redhat: kernel-debuginfo

393 / 398

Profiling oprofile

oprofile — Kernel Modules

Samples from kernel modules ...

Attributed to module name in operf output

... not a file

... but can be found in a file

→ opreport (and friends) need to look it up

Directing opreport To Module Tree

$ opreport \

--image-path=/lib64/modules/3.16.5-gentoo/kernel \

--symbols

...

394 / 398

Profiling oprofile

oprofile — System-Wide Profiling

System-Wide Profiling: Why?

Application (“appliance”?) consists of multiple processes

One or more kernel drivers play a role

→ one wants to know more about the big picture

System Wide Profiling (have to be root for that)

operf --system-wide

operf --system-wide --vmlinux=/path/to/vmlinux

→ Samples from everywhere ...

Userland processes

Kernel code used by system calls

Kernel code from interrupt service routines

Kernel code from kernel threads

395 / 398

Profiling oprofile

oprofile — Offline Profiling

Absolutely cool: oparchive

Samples gathered on production system

Analyzed on development system

→ Transfer of every file involved

Archiving on Production Machine

$ operf ./program # or whatever ...

$ oparchive --output-directory=$HOME/operf-output

$ tar -C $HOME -jcf operf-output.tar.bz2 operf-output

Later, at Home

$ tar jxf operf-output.tar.bz2

$ opreport archive:./operf-output

396 / 398

Profiling oprofile

oprofile — Graphical Beauty

Real men don’t need no graphics — but anyway, here it is ...

Converting oprofile data/ into callgrind Stuff

$ opreport -gdf|op2calltree

$ ls oprof.out.*

oprof.out.firefox oprof.out.NetworkManager

oprof.out.gnome-settings-daemon oprof.out.nm-applet

oprof.out.gnome-shell oprof.out.operf

oprof.out.gnome-terminal-server

One callgrind file for each process oprofile data/ has samples
from

Decadently Nicely viewable with kcachegrind

397 / 398

Profiling oprofile

Dummy

398 / 398

	Introduction
	Introduction
	Hello World
	Variables and Arithmetic
	for Loops
	Symbolic Constants
	Character I/O
	Arrays
	Functions
	Character Arrays
	Lifetime of Variables

	Types, Operators, Expressions
	Variable Names
	Data Types, Sizes
	Constants
	Variable Definitions
	Arithmetic Operators
	Relational and Logical Operators
	Type Conversions
	Increment, Decrement
	Bit-Operators
	Assignment with Calculation
	?: — Conditional Expression
	Precedence, Associativity

	Program Flow
	Statements and Blocks
	if — else
	else — if
	switch
	Loops: while and for
	Loops: do - while
	break and continue
	goto and Labels

	Functions and Program Structure
	Basics
	Extern/Global Variables
	Header Files
	Static Variablen
	C Preprocessor: Basics
	C Preprocessor: More

	Pointers and Arrays
	Pointers and Arrays
	Pointers as Function Parameters
	Pointers and Arrays
	Commandline

	Structures
	Basics
	struct, Functions
	typedef: Type Alias

	More Naked Memory
	Dynamic Memory

	Advanced Language Features
	Volatile
	Compiler Intrinsics
	Alignment

	Program Sanity
	Sanity and Readabilty
	Know Your Integers
	Discrete Values — enum
	Visibility — static
	Correctness — const
	Struct Initialization
	Explict Type Safety
	valgrind

	Performance
	Optimization
	Compute Bound Code
	Memory Optimizations

	Profiling
	Intro
	GNU Profiler — gprof
	callgrind
	oprofile

